Distributed Robust Continuous-Time Optimization Algorithms for Time-Varying Constrained Cost Functions

This paper presents a distributed continuous-time optimization framework aimed at overcoming the challenges posed by time-varying cost functions and constraints in multi-agent systems, particularly those subject to disturbances. By incorporating tools such as log-barrier penalty functions to address...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Control, Mechatronics and Automation (Online) s. 7 - 13
Hlavní autoři: Ebrahimi, Zeinab, Deghat, Mohammad
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 11.11.2024
Témata:
ISSN:2837-5149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a distributed continuous-time optimization framework aimed at overcoming the challenges posed by time-varying cost functions and constraints in multi-agent systems, particularly those subject to disturbances. By incorporating tools such as log-barrier penalty functions to address inequality constraints, an integral sliding mode control for disturbance mitigation is proposed. The algorithm ensures asymptotic tracking of the optimal solution, achieving a tracking error of zero. The convergence of the introduced algorithms is demonstrated through Lyapunov analysis and nonsmooth techniques. Furthermore, the framework's effectiveness is validated through numerical simulations considering two scenarios for the communication networks.
ISSN:2837-5149
DOI:10.1109/ICCMA63715.2024.10843887