An Improved Hybrid Aquila Optimizer and Pigeon-Inspired Optimization Algorithm with Its Application in PID Parameter Optimization

To improve the optimization performance of the standard Aquila Optimizer (AO), an Improved Hybrid Aquila Optimizer and Pigeon-Inspired Optimization (IHAOPIO) algorithm based on stochastic balancing factor and Dimension-by-dimension Centroid Opposition-Based Learning (DCOBL) strategy is proposed. Wil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 8th International Symposium on Computer Science and Intelligent Control (ISCSIC) S. 367 - 371
Hauptverfasser: Chen, Dongning, Du, Xinwei, Wang, Haowen, Xian, Qinggui, Sha, Jianhao, Yao, Chengyu
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 06.09.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the optimization performance of the standard Aquila Optimizer (AO), an Improved Hybrid Aquila Optimizer and Pigeon-Inspired Optimization (IHAOPIO) algorithm based on stochastic balancing factor and Dimension-by-dimension Centroid Opposition-Based Learning (DCOBL) strategy is proposed. Wilcoxon test is introduced to statistically analyze the data of six classical benchmark functions. Compared with several other optimization algorithms, the proposed IHAOPIO algorithm has better optimization capability in accuracy. The improved algorithm is used to the PID parameter optimization of one electro-hydraulic position servo system and achieves good control effect.
DOI:10.1109/ISCSIC64297.2024.00082