RKLT-Based Lossless Hyperspectral Image Compression Combined with Principal Components Selection
Summary form only given: In this paper a lossless compression method for hyperspectral image is given. RKLT-based scheme was first presented by combining with 3D prediction, principal component selection, positive mapping followed by a range coder. The proposed method avoids the float number of coef...
Uložené v:
| Vydané v: | DCC (Los Alamitos, Calif.) s. 584 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.03.2016
|
| Predmet: | |
| ISSN: | 1068-0314 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Summary form only given: In this paper a lossless compression method for hyperspectral image is given. RKLT-based scheme was first presented by combining with 3D prediction, principal component selection, positive mapping followed by a range coder. The proposed method avoids the float number of coefficient which can make it much more easier to be processed on hardware. Numerical experiments show that the proposed method outperforms the state-of-the-art methods (i.e., LUT-NN, LAIS-LUT, and AI) by 13% in terms of compression ratio. |
|---|---|
| ISSN: | 1068-0314 |
| DOI: | 10.1109/DCC.2016.127 |