RKLT-Based Lossless Hyperspectral Image Compression Combined with Principal Components Selection

Summary form only given: In this paper a lossless compression method for hyperspectral image is given. RKLT-based scheme was first presented by combining with 3D prediction, principal component selection, positive mapping followed by a range coder. The proposed method avoids the float number of coef...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:DCC (Los Alamitos, Calif.) s. 584
Hlavní autori: Hao Chen, Yi Hua, Shuang Zhou
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.03.2016
Predmet:
ISSN:1068-0314
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Summary form only given: In this paper a lossless compression method for hyperspectral image is given. RKLT-based scheme was first presented by combining with 3D prediction, principal component selection, positive mapping followed by a range coder. The proposed method avoids the float number of coefficient which can make it much more easier to be processed on hardware. Numerical experiments show that the proposed method outperforms the state-of-the-art methods (i.e., LUT-NN, LAIS-LUT, and AI) by 13% in terms of compression ratio.
ISSN:1068-0314
DOI:10.1109/DCC.2016.127