RKLT-Based Lossless Hyperspectral Image Compression Combined with Principal Components Selection

Summary form only given: In this paper a lossless compression method for hyperspectral image is given. RKLT-based scheme was first presented by combining with 3D prediction, principal component selection, positive mapping followed by a range coder. The proposed method avoids the float number of coef...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:DCC (Los Alamitos, Calif.) s. 584
Hlavní autoři: Hao Chen, Yi Hua, Shuang Zhou
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.03.2016
Témata:
ISSN:1068-0314
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Summary form only given: In this paper a lossless compression method for hyperspectral image is given. RKLT-based scheme was first presented by combining with 3D prediction, principal component selection, positive mapping followed by a range coder. The proposed method avoids the float number of coefficient which can make it much more easier to be processed on hardware. Numerical experiments show that the proposed method outperforms the state-of-the-art methods (i.e., LUT-NN, LAIS-LUT, and AI) by 13% in terms of compression ratio.
ISSN:1068-0314
DOI:10.1109/DCC.2016.127