RKLT-Based Lossless Hyperspectral Image Compression Combined with Principal Components Selection
Summary form only given: In this paper a lossless compression method for hyperspectral image is given. RKLT-based scheme was first presented by combining with 3D prediction, principal component selection, positive mapping followed by a range coder. The proposed method avoids the float number of coef...
Uloženo v:
| Vydáno v: | DCC (Los Alamitos, Calif.) s. 584 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.03.2016
|
| Témata: | |
| ISSN: | 1068-0314 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Summary form only given: In this paper a lossless compression method for hyperspectral image is given. RKLT-based scheme was first presented by combining with 3D prediction, principal component selection, positive mapping followed by a range coder. The proposed method avoids the float number of coefficient which can make it much more easier to be processed on hardware. Numerical experiments show that the proposed method outperforms the state-of-the-art methods (i.e., LUT-NN, LAIS-LUT, and AI) by 13% in terms of compression ratio. |
|---|---|
| ISSN: | 1068-0314 |
| DOI: | 10.1109/DCC.2016.127 |