Evolving networks for group object motion estimation

This paper proposes a technique for group object motion estimation based on evolving graph networks. The main novelty over alternative group tracking techniques stems from learning the network structure for the group. An algorithm is proposed for automatic graph structure initialisation, incorporati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET Seminar on Target Tracking and Data Fusion: Algorithms and Applications s. 97 - 106
Hlavní autoři: Gning, A, Mihaylova, L, Maskell, S, Sze Kim Pang, Godsill, S
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Stevenage IET 2008
Témata:
ISBN:0863419100, 9780863419102
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a technique for group object motion estimation based on evolving graph networks. The main novelty over alternative group tracking techniques stems from learning the network structure for the group. An algorithm is proposed for automatic graph structure initialisation, incorporation of new nodes and unexisting nodes removal in parallel with the edge update. This evolving graph model is combined with the sequential Monte Carlo framework and its effectiveness is illustrated over a complex scenario for group motion estimation in urban environment. Results with merging, splitting and crossing of the groups are presented with high estimation accuracy.
ISBN:0863419100
9780863419102
DOI:10.1049/ic:20080061