Evolving networks for group object motion estimation

This paper proposes a technique for group object motion estimation based on evolving graph networks. The main novelty over alternative group tracking techniques stems from learning the network structure for the group. An algorithm is proposed for automatic graph structure initialisation, incorporati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET Seminar on Target Tracking and Data Fusion: Algorithms and Applications s. 97 - 106
Hlavní autori: Gning, A, Mihaylova, L, Maskell, S, Sze Kim Pang, Godsill, S
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Stevenage IET 2008
Predmet:
ISBN:0863419100, 9780863419102
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes a technique for group object motion estimation based on evolving graph networks. The main novelty over alternative group tracking techniques stems from learning the network structure for the group. An algorithm is proposed for automatic graph structure initialisation, incorporation of new nodes and unexisting nodes removal in parallel with the edge update. This evolving graph model is combined with the sequential Monte Carlo framework and its effectiveness is illustrated over a complex scenario for group motion estimation in urban environment. Results with merging, splitting and crossing of the groups are presented with high estimation accuracy.
ISBN:0863419100
9780863419102
DOI:10.1049/ic:20080061