An auxiliary model based multi-innovation recursive least squares estimation algorithms for MIMO Hammerstein system

An auxiliary model based multi-innovation recursive least squares estimation algorithms is proposed in this paper. The unknown variables in the information vector can be estimated by using the auxiliary model. The proposed recursive least squares algorithm uses not only the current innovation but al...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 30th Chinese Control Conference s. 1442 - 1445
Hlavní autoři: Wang Xiuping, Chen Jing
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2011
Témata:
ISBN:9781457706776, 1457706776
ISSN:1934-1768
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An auxiliary model based multi-innovation recursive least squares estimation algorithms is proposed in this paper. The unknown variables in the information vector can be estimated by using the auxiliary model. The proposed recursive least squares algorithm uses not only the current innovation but also the past innovations at each recursion and thus the parameter estimation accuracy can be improved. Finally, the simulation results indicate that the proposed algorithm has good performances.
ISBN:9781457706776
1457706776
ISSN:1934-1768