Estimation of nonstationary AR model using the weighted recursive least square algorithm
A new method of estimating time-varying AR models using weighted recursive least square algorithm with a variable forgetting factor is described. The variable forgetting factor is adapted to a nonstationary signal by a generalized likelihood ratio algorithm through the so-called discrimination funct...
Uložené v:
| Vydané v: | 1995 International Conference on Acoustics, Speech, and Signal Processing Ročník 2; s. 1432 - 1435 vol.2 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
1995
|
| Predmet: | |
| ISBN: | 9780780324312, 0780324315 |
| ISSN: | 1520-6149 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A new method of estimating time-varying AR models using weighted recursive least square algorithm with a variable forgetting factor is described. The variable forgetting factor is adapted to a nonstationary signal by a generalized likelihood ratio algorithm through the so-called discrimination function which gives a good measure of nonstationarity. In this way we connect the results from the areas of nonstationary signal estimation and jump detection, and obtain an algorithm which exhibits a good tracking performance together with a high parameter estimation accuracy. The feasibility of the approach is demonstrated with both simulation data and real speech signals. |
|---|---|
| ISBN: | 9780780324312 0780324315 |
| ISSN: | 1520-6149 |
| DOI: | 10.1109/ICASSP.1995.480552 |

