Adaptive learning vector quantizers for image compression

We investigate adaptive vector quantization for image compression based the idea of gold-washing. The technique is a mechanism for testing the usefulness of a code vector in a codebook. It thus provides a tool for developing new ways of creating code vectors dynamically based on the input data. In t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:1996 IEEE International Conference on Image Processing Proceedings Ročník 3; s. 459 - 462 vol.3
Hlavní autor: Jianhua Lin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 1996
Témata:
ISBN:9780780332591, 0780332598
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We investigate adaptive vector quantization for image compression based the idea of gold-washing. The technique is a mechanism for testing the usefulness of a code vector in a codebook. It thus provides a tool for developing new ways of creating code vectors dynamically based on the input data. In this paper, we propose a new algorithm to quantize an input for which a close enough code vector can not be found. It guarantees that the compressed result is within pre-set distortion. We also use a learning algorithm to produce new code vectors from useful existing ones.
ISBN:9780780332591
0780332598
DOI:10.1109/ICIP.1996.560530