Adaptive learning vector quantizers for image compression
We investigate adaptive vector quantization for image compression based the idea of gold-washing. The technique is a mechanism for testing the usefulness of a code vector in a codebook. It thus provides a tool for developing new ways of creating code vectors dynamically based on the input data. In t...
Uloženo v:
| Vydáno v: | 1996 IEEE International Conference on Image Processing Proceedings Ročník 3; s. 459 - 462 vol.3 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
1996
|
| Témata: | |
| ISBN: | 9780780332591, 0780332598 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We investigate adaptive vector quantization for image compression based the idea of gold-washing. The technique is a mechanism for testing the usefulness of a code vector in a codebook. It thus provides a tool for developing new ways of creating code vectors dynamically based on the input data. In this paper, we propose a new algorithm to quantize an input for which a close enough code vector can not be found. It guarantees that the compressed result is within pre-set distortion. We also use a learning algorithm to produce new code vectors from useful existing ones. |
|---|---|
| ISBN: | 9780780332591 0780332598 |
| DOI: | 10.1109/ICIP.1996.560530 |

