An appearance based neural image processing algorithm for 3-D object recognition
We propose an appearance based neural image processing algorithm for the recognition of 3-D objects with arbitrary pose in a 2-D image. Instead of object segmentation we utilize the wavelet transform to extract compact features for object representation. Translational invariance is achieved by using...
Uloženo v:
| Vydáno v: | Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101) Ročník 3; s. 344 - 347 vol.3 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2000
|
| Témata: | |
| ISBN: | 0780362977, 9780780362970 |
| ISSN: | 1522-4880 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose an appearance based neural image processing algorithm for the recognition of 3-D objects with arbitrary pose in a 2-D image. Instead of object segmentation we utilize the wavelet transform to extract compact features for object representation. Translational invariance is achieved by using two neural network based object pose estimators to translate objects automatically to the image center. Based on these translation-invariant features a neural model is built to identify objects taken at different viewpoint and under different illumination condition. Results for the recognition of real images under occlusions are shown. |
|---|---|
| ISBN: | 0780362977 9780780362970 |
| ISSN: | 1522-4880 |
| DOI: | 10.1109/ICIP.2000.899388 |

