An appearance based neural image processing algorithm for 3-D object recognition

We propose an appearance based neural image processing algorithm for the recognition of 3-D objects with arbitrary pose in a 2-D image. Instead of object segmentation we utilize the wavelet transform to extract compact features for object representation. Translational invariance is achieved by using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101) Jg. 3; S. 344 - 347 vol.3
Hauptverfasser: Chunrong Yuan, Niemann, H.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 2000
Schlagworte:
ISBN:0780362977, 9780780362970
ISSN:1522-4880
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an appearance based neural image processing algorithm for the recognition of 3-D objects with arbitrary pose in a 2-D image. Instead of object segmentation we utilize the wavelet transform to extract compact features for object representation. Translational invariance is achieved by using two neural network based object pose estimators to translate objects automatically to the image center. Based on these translation-invariant features a neural model is built to identify objects taken at different viewpoint and under different illumination condition. Results for the recognition of real images under occlusions are shown.
ISBN:0780362977
9780780362970
ISSN:1522-4880
DOI:10.1109/ICIP.2000.899388