A modified fuzzy C-means algorithm for feature selection

In this paper we propose a novel method for feature selection based on a modified fuzzy C-means algorithm with supervision (MFCMS). MFCMS adopts an appropriately modified version of the objective function used by the classic fuzzy C-means. We applied MFCMS to some real-world pattern classification b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2000 19th International Conference of the North American Fuzzy Information Processing Society s. 148 - 152
Hlavní autori: Frosini, G., Lazzerini, B., Marcelloni, F.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 2000
Predmet:
ISBN:9780780362741, 0780362748
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we propose a novel method for feature selection based on a modified fuzzy C-means algorithm with supervision (MFCMS). MFCMS adopts an appropriately modified version of the objective function used by the classic fuzzy C-means. We applied MFCMS to some real-world pattern classification benchmarks. To test the effectiveness of MFCMS as feature selector, we used the well-known k-nearest neighbor as learning algorithm. In our experiments we found that the classification performance using the set of features selected by MFCMS is better than that using all the original features. Furthermore, our approach proved to be less time consuming than other feature selection methods.
ISBN:9780780362741
0780362748
DOI:10.1109/NAFIPS.2000.877409