A modified fuzzy C-means algorithm for feature selection

In this paper we propose a novel method for feature selection based on a modified fuzzy C-means algorithm with supervision (MFCMS). MFCMS adopts an appropriately modified version of the objective function used by the classic fuzzy C-means. We applied MFCMS to some real-world pattern classification b...

Full description

Saved in:
Bibliographic Details
Published in:2000 19th International Conference of the North American Fuzzy Information Processing Society pp. 148 - 152
Main Authors: Frosini, G., Lazzerini, B., Marcelloni, F.
Format: Conference Proceeding
Language:English
Published: IEEE 2000
Subjects:
ISBN:9780780362741, 0780362748
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we propose a novel method for feature selection based on a modified fuzzy C-means algorithm with supervision (MFCMS). MFCMS adopts an appropriately modified version of the objective function used by the classic fuzzy C-means. We applied MFCMS to some real-world pattern classification benchmarks. To test the effectiveness of MFCMS as feature selector, we used the well-known k-nearest neighbor as learning algorithm. In our experiments we found that the classification performance using the set of features selected by MFCMS is better than that using all the original features. Furthermore, our approach proved to be less time consuming than other feature selection methods.
AbstractList In this paper we propose a novel method for feature selection based on a modified fuzzy C-means algorithm with supervision (MFCMS). MFCMS adopts an appropriately modified version of the objective function used by the classic fuzzy C-means. We applied MFCMS to some real-world pattern classification benchmarks. To test the effectiveness of MFCMS as feature selector, we used the well-known k-nearest neighbor as learning algorithm. In our experiments we found that the classification performance using the set of features selected by MFCMS is better than that using all the original features. Furthermore, our approach proved to be less time consuming than other feature selection methods.
Author Lazzerini, B.
Marcelloni, F.
Frosini, G.
Author_xml – sequence: 1
  givenname: G.
  surname: Frosini
  fullname: Frosini, G.
  organization: Dipt. di Ingegneria della Inf., Pisa Univ., Italy
– sequence: 2
  givenname: B.
  surname: Lazzerini
  fullname: Lazzerini, B.
– sequence: 3
  givenname: F.
  surname: Marcelloni
  fullname: Marcelloni, F.
BookMark eNotj8tKAzEYRgMqqHVeoKu8wIy5_DNJlsNgtVBUUNclTf5oZC6STBft01to4YOzOHDguyfX4zQiIUvOKs6ZeXxtV-v3j0owxiqtFDBzRQqjNDtNNkIBvyVFzr8nz6AGxfkd0S0dJh9DRE_D_ng80K4c0I6Z2v57SnH-GWiYEg1o531CmrFHN8dpfCA3wfYZiwsX5Gv19Nm9lJu353XXbsrIGcylQm93HgPsPAOpnNaNAfRagBMBgwpgjHYucA6idsKhAucbLmvUzliQckGW525ExO1fioNNh-35nvwH10tH4g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NAFIPS.2000.877409
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 152
ExternalDocumentID 877409
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
ID FETCH-LOGICAL-i104t-7edabdef4bd0437c88694ed824c2fef7f4998ccf11425c2ce74cd6135e8c9a433
IEDL.DBID RIE
ISBN 9780780362741
0780362748
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000089942800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue Aug 26 18:18:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i104t-7edabdef4bd0437c88694ed824c2fef7f4998ccf11425c2ce74cd6135e8c9a433
PageCount 5
ParticipantIDs ieee_primary_877409
PublicationCentury 2000
PublicationDate 20000000
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – year: 2000
  text: 20000000
PublicationDecade 2000
PublicationTitle 2000 19th International Conference of the North American Fuzzy Information Processing Society
PublicationTitleAbbrev NAFIPS
PublicationYear 2000
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000454711
Score 1.2825204
Snippet In this paper we propose a novel method for feature selection based on a modified fuzzy C-means algorithm with supervision (MFCMS). MFCMS adopts an...
SourceID ieee
SourceType Publisher
StartPage 148
SubjectTerms Benchmark testing
Clustering algorithms
Fuzzy sets
Partitioning algorithms
Pattern classification
Pattern recognition
Prototypes
Shape
Symmetric matrices
Title A modified fuzzy C-means algorithm for feature selection
URI https://ieeexplore.ieee.org/document/877409
WOSCitedRecordID wos000089942800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgIxFG2UuHCFIsZ3unA7wHTK9M6SEIluCImasCN93OokwhgYSOTrbTsDxsSNu7aLpunrPtpzDiH3koEFCS42SRMZ8ViFMyejfgpMWben0NggNiHGY5hOs0nNsx2wMIgYPp9hxxfDW74p9NqnyrrgfBUP1jsUIq2gWvt0imeSE3EcAnPwt7LgUPPr7OrxDjPTy7rjwehp8hxwKp2q11_qKsG4jJr_GtYJaf-A9Ohkb35OyQEuWqS5U2mg9aE9IzCg88Lk1vma1K632y86jOboLBSVH2_FMi_f59R5rtRi4Pikq6CM45arTV5HDy_Dx6jWS4hyF1SVkUAjlUHLlfGMRRogzTgaYFwzi1ZYF92A1tbDZ_uaaRRcG2fO-wg6kzxJzkljUSzwglBgOhHo2q1iXBirlO5pZlLDY5MA6kvS8vMw-6woMWbVFFz92XpNjiv8us9b3JBGuVzjLTnSmzJfLe_CMn4DU8GbOA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4MmugJRYzf9uB1wLpue3ckRAIRFxIx4Ua29q0uEWZgmMivt-0GxsSLt7aHpunX-9E-z0PIfcJAQQI6Ngm8xOFuas9c4vgBsFTpPYVSWbGJMI5hOo3GFc-2xcIgov18hi1TtG_5Mhdrkyprg_ZVDFhv3-ecdUqw1i6hYrjkQte1oTmYeznkUDHsbOvuFjXTidpxtz8cP1ukSqvs95e-ijUv_fq_BnZMmj8wPTreGaATsoeLBqlvdRpodWxPCXTpPJeZ0t4mVevN5ov2nDlqG0WT99d8mRVvc6p9V6rQsnzSldXG0QvWJC_9h0lv4FSKCU6mw6rCCVEmqUTFU2k4iwRAEHGUwLhgClWodHwDQigDoPUFExhyIbVB9xFElHDPOyO1Rb7Ac0KBCS9E3a5SxkOp0lR0BJOB5K70AMUFaZh5mH2UpBizcgou_2y9I4eDydNoNhrGj1fkqESzmyzGNakVyzXekAPxWWSr5a1d0m-aHp5_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2000+19th+International+Conference+of+the+North+American+Fuzzy+Information+Processing+Society&rft.atitle=A+modified+fuzzy+C-means+algorithm+for+feature+selection&rft.au=Frosini%2C+G.&rft.au=Lazzerini%2C+B.&rft.au=Marcelloni%2C+F.&rft.date=2000-01-01&rft.pub=IEEE&rft.isbn=9780780362741&rft.spage=148&rft.epage=152&rft_id=info:doi/10.1109%2FNAFIPS.2000.877409&rft.externalDocID=877409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780362741/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780362741/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780362741/sc.gif&client=summon&freeimage=true