Finite Element Method

Finite element method (FEM) has wide applications in various science and engineering fields viz. structural mechanics, biomechanics and electromagnetic field problems, etc. of which exact solutions may not be determined. It serves as a numerical discretization approach that converts differential equ...

Full description

Saved in:
Bibliographic Details
Published in:Advanced Numerical and Semi-Analytical Methods for Differential Equations pp. 63 - 80
Main Authors: Chakraverty, Snehashish, Mahato, Nisha, Karunakar, Perumandla, Dilleswar Rao, Tharasi
Format: Book Chapter
Language:English
Published: United States Wiley 2019
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Edition:1
Subjects:
ISBN:9781119423423, 1119423422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Finite element method (FEM) has wide applications in various science and engineering fields viz. structural mechanics, biomechanics and electromagnetic field problems, etc. of which exact solutions may not be determined. It serves as a numerical discretization approach that converts differential equations into algebraic equations. This chapter solves simple differential equations in order to have better understanding of the finite element technique. For ease of understanding the FEM, the step‐by‐step procedure of linear second‐order ordinary differential equation (ODE) is considered with respect to the Galerkin method. In structural mechanics, the approximate solution of governing partial differential equations for structures may be obtained using the FEM. Under static and dynamic conditions, the associated differential equations get transformed to simultaneous algebraic equations and eigenvalue problems, respectively. In this regard, the chapter considers static and dynamic analysis of structural systems. It also considers the FEM modeling of one‐dimensional structural system subject to static conditions.
AbstractList Finite element method (FEM) has wide applications in various science and engineering fields viz. structural mechanics, biomechanics and electromagnetic field problems, etc. of which exact solutions may not be determined. It serves as a numerical discretization approach that converts differential equations into algebraic equations. This chapter solves simple differential equations in order to have better understanding of the finite element technique. For ease of understanding the FEM, the step‐by‐step procedure of linear second‐order ordinary differential equation (ODE) is considered with respect to the Galerkin method. In structural mechanics, the approximate solution of governing partial differential equations for structures may be obtained using the FEM. Under static and dynamic conditions, the associated differential equations get transformed to simultaneous algebraic equations and eigenvalue problems, respectively. In this regard, the chapter considers static and dynamic analysis of structural systems. It also considers the FEM modeling of one‐dimensional structural system subject to static conditions.
Finite element method (FEM) has wide applications in various science and engineering fields viz. structural mechanics, biomechanics and electromagnetic field problems, etc. of which exact solutions may not be determined. It serves as a numerical discretization approach that converts differential equations into algebraic equations. This chapter solves simple differential equations in order to have better understanding of the finite element technique. For ease of understanding the FEM, the step‐by‐step procedure of linear second‐order ordinary differential equation (ODE) is considered with respect to the Galerkin method. In structural mechanics, the approximate solution of governing partial differential equations for structures may be obtained using the FEM. Under static and dynamic conditions, the associated differential equations get transformed to simultaneous algebraic equations and eigenvalue problems, respectively. In this regard, the chapter considers static and dynamic analysis of structural systems. It also considers the FEM modeling of one‐dimensional structural system subject to static conditions.
Author Karunakar, Perumandla
Dilleswar Rao, Tharasi
Mahato, Nisha
Chakraverty, Snehashish
Author_xml – sequence: 1
  givenname: Snehashish
  surname: Chakraverty
  fullname: Chakraverty, Snehashish
– sequence: 2
  givenname: Nisha
  surname: Mahato
  fullname: Mahato, Nisha
– sequence: 3
  givenname: Perumandla
  surname: Karunakar
  fullname: Karunakar, Perumandla
– sequence: 4
  givenname: Tharasi
  surname: Dilleswar Rao
  fullname: Dilleswar Rao, Tharasi
BookMark eNpVjz1Pw0AMhg_xIWjpyNCtf6DFPl_uY0RVC0hFLDCf7hJHiQhJSYIQ_55U6UAHy_IrPbafibiom5qFmCOsEEDeO2MR0SlJSuMqLfSZmP3LCM5PZklXYoLgwEgLhq7FrOvKCGTAusS4G3G3Leuy58Wm4k-u-8UL90WT3YrLPFQdz459Kt63m7f103L3-vi8ftgtSwTSS7Q2quCkiSbN8gioc8pI6iTXGhJ0KWMAcqmygaM0rE1CMQvMioMy5GgqcNz7U1b86zk2zUfnEfzB1Z-4-sH1UAMjR2bfNl_f3PUjlg7ft6FKi7Dvue18YhRKqXyivMUBmo9Qycx-PGO1ddI6-gMSyF4S
ContentType Book Chapter
Copyright 2019 Wiley
2019 John Wiley & Sons, Inc.
Copyright_xml – notice: 2019 Wiley
– notice: 2019 John Wiley & Sons, Inc.
DBID FFUUA
DOI 10.1002/9781119423461.ch6
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781119423430
9781119423447
9781119423461
1119423449
1119423430
1119423465
Edition 1
EndPage 80
ExternalDocumentID 10.1002/9781119423461.ch6
EBC5741224_54_81
8689289
Genre chapter
GroupedDBID 38.
3XM
AABBV
ABARN
ABQPQ
ADUVA
ADVEM
AERYV
AFOJC
AFPKT
AJFER
AK3
AKQZE
ALMA_UNASSIGNED_HOLDINGS
AUUOE
AZZ
BBABE
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CZZ
ECNEQ
ERSLE
GEOUK
GQOVZ
IETMW
IPJKO
IVUIE
JFSCD
KKBTI
LMJTD
LQKAK
LWYJN
LYPXV
MRDEW
OCL
OHILO
OODEK
W1A
YPLAZ
ZEEST
ABAZT
ABBFG
ACGYG
ACLGV
ACNUM
AENVZ
AHWGJ
FFUUA
WIIVT
ID FETCH-LOGICAL-i1036-188b4a927b7cdfb016f3d3265f660519ce1a039c48aeb27e6753bdaee4ea47393
ISBN 9781119423423
1119423422
IngestDate Sat Nov 15 22:28:24 EST 2025
Tue Oct 21 07:34:01 EDT 2025
Fri Nov 11 10:38:51 EST 2022
IsPeerReviewed false
IsScholarly false
Keywords Interpolation
Three-dimensional displays
Shape
Two dimensional displays
Boundary conditions
Finite element analysis
Method of moments
LCCallNum QA371 .C435 2019
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i1036-188b4a927b7cdfb016f3d3265f660519ce1a039c48aeb27e6753bdaee4ea47393
OCLC 1090728073
PQID EBC5741224_54_81
PageCount 18
ParticipantIDs wiley_ebooks_10_1002_9781119423461_ch6_ch6
ieee_books_8689289
proquest_ebookcentralchapters_5741224_54_81
PublicationCentury 2000
PublicationDate 2019
2019-04-30
PublicationDateYYYYMMDD 2019-01-01
2019-04-30
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken, NJ, USA
PublicationTitle Advanced Numerical and Semi-Analytical Methods for Differential Equations
PublicationYear 2019
Publisher Wiley
John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Incorporated
– name: John Wiley & Sons, Inc
References Logan (c06-cit-0006) 2015
Hoffman, Frankel (c06-cit-0009) 2001
Kattan (c06-cit-0012) 2010
Petyt (c06-cit-0002) 2010
Bhavikatti (c06-cit-0005) 2005
Jain (c06-cit-0010) 2014
(c06-cit-0011) 2000
Rao (c06-cit-0003) 2017
Nayak, Chakraverty (c06-cit-0007) 2018
Seshu (c06-cit-0004) 2003
Gerald, Wheatley (c06-cit-0008) 2004
Zienkiewicz, Taylor, Zhu (c06-cit-0001) 2005; 132
References_xml – year: 2005
  ident: c06-cit-0005
  article-title: Finite Element Analysis
– year: 2018
  ident: c06-cit-0007
  article-title: Interval Finite Element Method with MATLAB
– year: 2003
  ident: c06-cit-0004
  article-title: Textbook of Finite Element Analysis
– volume: 132
  start-page: 1987
  year: 2005
  end-page: 1993
  ident: c06-cit-0001
  article-title: The Finite Element Method: Its Basis and Fundamentals
– year: 2001
  ident: c06-cit-0009
  article-title: Numerical Methods for Engineers and Scientists
– year: 2014
  ident: c06-cit-0010
  article-title: Numerical Solution of Differential Equations
– start-page: 123
  year: 2000
  end-page: 164
  ident: c06-cit-0011
  article-title: Finite element method for ordinary differential equations
  publication-title: Numerical Methods for Partial Differential Equations
– year: 2017
  ident: c06-cit-0003
  article-title: The Finite Element Method in Engineering
– year: 2010
  ident: c06-cit-0012
  article-title: MATLAB Guide to Finite Elements: An Interactive Approach
– year: 2015
  ident: c06-cit-0006
  article-title: A First Course in the Finite Element Method
– year: 2004
  ident: c06-cit-0008
  article-title: Applied Numerical Analysis
– year: 2010
  ident: c06-cit-0002
  article-title: Introduction to Finite Element Vibration Analysis
SSID ssib037089579
ssj0002152863
ssib035724529
ssib043664869
ssib050313482
Score 1.5611519
Snippet Finite element method (FEM) has wide applications in various science and engineering fields viz. structural mechanics, biomechanics and electromagnetic field...
SourceID wiley
proquest
ieee
SourceType Publisher
StartPage 63
SubjectTerms algebraic equations
dynamic analysis
eigenvalue problems
finite element method
Galerkin method
linear second‐order ordinary differential equation
partial differential equations
static conditions
structural mechanics
Title Finite Element Method
URI http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8689289
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5741224&ppg=81&c=UERG
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119423461.ch6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6wQG4MBhaYaAeOFEFEtuJnfPUgYRaprFJu0VO_KJGlGwk7di_wX_M80dCusFhBw6JoshKn_3c9-3fI-QtDQVAmIdBqRU6KJpBIEGzINai5DKnBhLENpsQi4W8uEhPRqNf3VmY65Woa3lzk179V1bjO2S2OTp7D3b3H8UX-IxMxzuyHe-3LOLt2KurOe5S-ouNS8U4JICv8L3qyxosDokLYc9t_2gLyYDCz7VKWZsY-uzHZhDK69P_pnmzKw6rYWnaMLV9NHmulsq2ZMLN1S7V9FTVVS_NVbOp1TdXy30CjUkc6FWvEE7VpatVUo1qKyRktYL2p2qG2_m4MsbxdOaq3T3hw5BFNMy-WHVytyZou_DTObcohVM09jhlAwHrpaFX1eFflYADlR18IYneF8tbgNveA_rn6B2yIwQKzgcfZ1_OP3ciKjZQlx0ckFH2pi2wTJjtQeXJpR5JrCe_S6aH9MOdn_FNfbb8m6GXZM2cs6fkiTn6MjFnUpD-PTKC-hl5PO-RfdvnZN8xYuIZMXGM2Cfnx7Ozo0-Bb60RVJGBoI6kzLlKqchFocsc7f6SabTk4zJJjFFfQKRClhZcKsipAHQrWa4VAAfFDYjiC7JbX9ZwQCZhClInXDFJNY80l1qEEIuoyDWHlLMx2TMzzMx_os1kIlP08cdk2s03s1UBvhS5cBNssxgtXbQus5hnMhqTd3ZJ3NA2c1DbNNtazQxX01wv7zP4FXn0Z4Mekt11s4HX5GFxva7a5o1n_m86FHJb
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Numerical+and+Semi%E2%80%90Analytical+Methods+for+Differential+Equations&rft.au=Chakraverty%2C+Snehashish&rft.au=Mahato%2C+Nisha+Rani&rft.au=Karunakar%2C+Perumandla&rft.au=Rao%2C+Tharasi+Dilleswar&rft.atitle=Finite+Element+Method&rft.date=2019-04-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781119423423&rft.spage=63&rft.epage=80&rft_id=info:doi/10.1002%2F9781119423461.ch6&rft.externalDocID=10.1002%2F9781119423461.ch6
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5741224-l.jpg