Finite Element Method
Finite element method (FEM) has wide applications in various science and engineering fields viz. structural mechanics, biomechanics and electromagnetic field problems, etc. of which exact solutions may not be determined. It serves as a numerical discretization approach that converts differential equ...
Saved in:
| Published in: | Advanced Numerical and Semi-Analytical Methods for Differential Equations pp. 63 - 80 |
|---|---|
| Main Authors: | , , , |
| Format: | Book Chapter |
| Language: | English |
| Published: |
United States
Wiley
2019
John Wiley & Sons, Incorporated John Wiley & Sons, Inc |
| Edition: | 1 |
| Subjects: | |
| ISBN: | 9781119423423, 1119423422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Finite element method (FEM) has wide applications in various science and engineering fields viz. structural mechanics, biomechanics and electromagnetic field problems, etc. of which exact solutions may not be determined. It serves as a numerical discretization approach that converts differential equations into algebraic equations. This chapter solves simple differential equations in order to have better understanding of the finite element technique. For ease of understanding the FEM, the step‐by‐step procedure of linear second‐order ordinary differential equation (ODE) is considered with respect to the Galerkin method. In structural mechanics, the approximate solution of governing partial differential equations for structures may be obtained using the FEM. Under static and dynamic conditions, the associated differential equations get transformed to simultaneous algebraic equations and eigenvalue problems, respectively. In this regard, the chapter considers static and dynamic analysis of structural systems. It also considers the FEM modeling of one‐dimensional structural system subject to static conditions. |
|---|---|
| AbstractList | Finite element method (FEM) has wide applications in various science and engineering fields viz. structural mechanics, biomechanics and electromagnetic field problems, etc. of which exact solutions may not be determined. It serves as a numerical discretization approach that converts differential equations into algebraic equations. This chapter solves simple differential equations in order to have better understanding of the finite element technique. For ease of understanding the FEM, the step‐by‐step procedure of linear second‐order ordinary differential equation (ODE) is considered with respect to the Galerkin method. In structural mechanics, the approximate solution of governing partial differential equations for structures may be obtained using the FEM. Under static and dynamic conditions, the associated differential equations get transformed to simultaneous algebraic equations and eigenvalue problems, respectively. In this regard, the chapter considers static and dynamic analysis of structural systems. It also considers the FEM modeling of one‐dimensional structural system subject to static conditions. Finite element method (FEM) has wide applications in various science and engineering fields viz. structural mechanics, biomechanics and electromagnetic field problems, etc. of which exact solutions may not be determined. It serves as a numerical discretization approach that converts differential equations into algebraic equations. This chapter solves simple differential equations in order to have better understanding of the finite element technique. For ease of understanding the FEM, the step‐by‐step procedure of linear second‐order ordinary differential equation (ODE) is considered with respect to the Galerkin method. In structural mechanics, the approximate solution of governing partial differential equations for structures may be obtained using the FEM. Under static and dynamic conditions, the associated differential equations get transformed to simultaneous algebraic equations and eigenvalue problems, respectively. In this regard, the chapter considers static and dynamic analysis of structural systems. It also considers the FEM modeling of one‐dimensional structural system subject to static conditions. |
| Author | Karunakar, Perumandla Dilleswar Rao, Tharasi Mahato, Nisha Chakraverty, Snehashish |
| Author_xml | – sequence: 1 givenname: Snehashish surname: Chakraverty fullname: Chakraverty, Snehashish – sequence: 2 givenname: Nisha surname: Mahato fullname: Mahato, Nisha – sequence: 3 givenname: Perumandla surname: Karunakar fullname: Karunakar, Perumandla – sequence: 4 givenname: Tharasi surname: Dilleswar Rao fullname: Dilleswar Rao, Tharasi |
| BookMark | eNpVjz1Pw0AMhg_xIWjpyNCtf6DFPl_uY0RVC0hFLDCf7hJHiQhJSYIQ_55U6UAHy_IrPbafibiom5qFmCOsEEDeO2MR0SlJSuMqLfSZmP3LCM5PZklXYoLgwEgLhq7FrOvKCGTAusS4G3G3Leuy58Wm4k-u-8UL90WT3YrLPFQdz459Kt63m7f103L3-vi8ftgtSwTSS7Q2quCkiSbN8gioc8pI6iTXGhJ0KWMAcqmygaM0rE1CMQvMioMy5GgqcNz7U1b86zk2zUfnEfzB1Z-4-sH1UAMjR2bfNl_f3PUjlg7ft6FKi7Dvue18YhRKqXyivMUBmo9Qycx-PGO1ddI6-gMSyF4S |
| ContentType | Book Chapter |
| Copyright | 2019 Wiley 2019 John Wiley & Sons, Inc. |
| Copyright_xml | – notice: 2019 Wiley – notice: 2019 John Wiley & Sons, Inc. |
| DBID | FFUUA |
| DOI | 10.1002/9781119423461.ch6 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781119423430 9781119423447 9781119423461 1119423449 1119423430 1119423465 |
| Edition | 1 |
| EndPage | 80 |
| ExternalDocumentID | 10.1002/9781119423461.ch6 EBC5741224_54_81 8689289 |
| Genre | chapter |
| GroupedDBID | 38. 3XM AABBV ABARN ABQPQ ADUVA ADVEM AERYV AFOJC AFPKT AJFER AK3 AKQZE ALMA_UNASSIGNED_HOLDINGS AUUOE AZZ BBABE BEFXN BFFAM BGNUA BKEBE BPEOZ CZZ ECNEQ ERSLE GEOUK GQOVZ IETMW IPJKO IVUIE JFSCD KKBTI LMJTD LQKAK LWYJN LYPXV MRDEW OCL OHILO OODEK W1A YPLAZ ZEEST ABAZT ABBFG ACGYG ACLGV ACNUM AENVZ AHWGJ FFUUA WIIVT |
| ID | FETCH-LOGICAL-i1036-188b4a927b7cdfb016f3d3265f660519ce1a039c48aeb27e6753bdaee4ea47393 |
| ISBN | 9781119423423 1119423422 |
| IngestDate | Sat Nov 15 22:28:24 EST 2025 Tue Oct 21 07:34:01 EDT 2025 Fri Nov 11 10:38:51 EST 2022 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Interpolation Three-dimensional displays Shape Two dimensional displays Boundary conditions Finite element analysis Method of moments |
| LCCallNum | QA371 .C435 2019 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-i1036-188b4a927b7cdfb016f3d3265f660519ce1a039c48aeb27e6753bdaee4ea47393 |
| OCLC | 1090728073 |
| PQID | EBC5741224_54_81 |
| PageCount | 18 |
| ParticipantIDs | wiley_ebooks_10_1002_9781119423461_ch6_ch6 ieee_books_8689289 proquest_ebookcentralchapters_5741224_54_81 |
| PublicationCentury | 2000 |
| PublicationDate | 2019 2019-04-30 |
| PublicationDateYYYYMMDD | 2019-01-01 2019-04-30 |
| PublicationDate_xml | – year: 2019 text: 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken, NJ, USA |
| PublicationTitle | Advanced Numerical and Semi-Analytical Methods for Differential Equations |
| PublicationYear | 2019 |
| Publisher | Wiley John Wiley & Sons, Incorporated John Wiley & Sons, Inc |
| Publisher_xml | – name: Wiley – name: John Wiley & Sons, Incorporated – name: John Wiley & Sons, Inc |
| References | Logan (c06-cit-0006) 2015 Hoffman, Frankel (c06-cit-0009) 2001 Kattan (c06-cit-0012) 2010 Petyt (c06-cit-0002) 2010 Bhavikatti (c06-cit-0005) 2005 Jain (c06-cit-0010) 2014 (c06-cit-0011) 2000 Rao (c06-cit-0003) 2017 Nayak, Chakraverty (c06-cit-0007) 2018 Seshu (c06-cit-0004) 2003 Gerald, Wheatley (c06-cit-0008) 2004 Zienkiewicz, Taylor, Zhu (c06-cit-0001) 2005; 132 |
| References_xml | – year: 2005 ident: c06-cit-0005 article-title: Finite Element Analysis – year: 2018 ident: c06-cit-0007 article-title: Interval Finite Element Method with MATLAB – year: 2003 ident: c06-cit-0004 article-title: Textbook of Finite Element Analysis – volume: 132 start-page: 1987 year: 2005 end-page: 1993 ident: c06-cit-0001 article-title: The Finite Element Method: Its Basis and Fundamentals – year: 2001 ident: c06-cit-0009 article-title: Numerical Methods for Engineers and Scientists – year: 2014 ident: c06-cit-0010 article-title: Numerical Solution of Differential Equations – start-page: 123 year: 2000 end-page: 164 ident: c06-cit-0011 article-title: Finite element method for ordinary differential equations publication-title: Numerical Methods for Partial Differential Equations – year: 2017 ident: c06-cit-0003 article-title: The Finite Element Method in Engineering – year: 2010 ident: c06-cit-0012 article-title: MATLAB Guide to Finite Elements: An Interactive Approach – year: 2015 ident: c06-cit-0006 article-title: A First Course in the Finite Element Method – year: 2004 ident: c06-cit-0008 article-title: Applied Numerical Analysis – year: 2010 ident: c06-cit-0002 article-title: Introduction to Finite Element Vibration Analysis |
| SSID | ssib037089579 ssj0002152863 ssib035724529 ssib043664869 ssib050313482 |
| Score | 1.5611519 |
| Snippet | Finite element method (FEM) has wide applications in various science and engineering fields viz. structural mechanics, biomechanics and electromagnetic field... |
| SourceID | wiley proquest ieee |
| SourceType | Publisher |
| StartPage | 63 |
| SubjectTerms | algebraic equations dynamic analysis eigenvalue problems finite element method Galerkin method linear second‐order ordinary differential equation partial differential equations static conditions structural mechanics |
| Title | Finite Element Method |
| URI | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8689289 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5741224&ppg=81&c=UERG https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119423461.ch6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6wQG4MBhaYaAeOFEFEtuJnfPUgYRaprFJu0VO_KJGlGwk7di_wX_M80dCusFhBw6JoshKn_3c9-3fI-QtDQVAmIdBqRU6KJpBIEGzINai5DKnBhLENpsQi4W8uEhPRqNf3VmY65Woa3lzk179V1bjO2S2OTp7D3b3H8UX-IxMxzuyHe-3LOLt2KurOe5S-ouNS8U4JICv8L3qyxosDokLYc9t_2gLyYDCz7VKWZsY-uzHZhDK69P_pnmzKw6rYWnaMLV9NHmulsq2ZMLN1S7V9FTVVS_NVbOp1TdXy30CjUkc6FWvEE7VpatVUo1qKyRktYL2p2qG2_m4MsbxdOaq3T3hw5BFNMy-WHVytyZou_DTObcohVM09jhlAwHrpaFX1eFflYADlR18IYneF8tbgNveA_rn6B2yIwQKzgcfZ1_OP3ciKjZQlx0ckFH2pi2wTJjtQeXJpR5JrCe_S6aH9MOdn_FNfbb8m6GXZM2cs6fkiTn6MjFnUpD-PTKC-hl5PO-RfdvnZN8xYuIZMXGM2Cfnx7Ozo0-Bb60RVJGBoI6kzLlKqchFocsc7f6SabTk4zJJjFFfQKRClhZcKsipAHQrWa4VAAfFDYjiC7JbX9ZwQCZhClInXDFJNY80l1qEEIuoyDWHlLMx2TMzzMx_os1kIlP08cdk2s03s1UBvhS5cBNssxgtXbQus5hnMhqTd3ZJ3NA2c1DbNNtazQxX01wv7zP4FXn0Z4Mekt11s4HX5GFxva7a5o1n_m86FHJb |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Numerical+and+Semi%E2%80%90Analytical+Methods+for+Differential+Equations&rft.au=Chakraverty%2C+Snehashish&rft.au=Mahato%2C+Nisha+Rani&rft.au=Karunakar%2C+Perumandla&rft.au=Rao%2C+Tharasi+Dilleswar&rft.atitle=Finite+Element+Method&rft.date=2019-04-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.isbn=9781119423423&rft.spage=63&rft.epage=80&rft_id=info:doi/10.1002%2F9781119423461.ch6&rft.externalDocID=10.1002%2F9781119423461.ch6 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5741224-l.jpg |

