Dental tissue classification using computational intelligence and digital image analysis
Learning techniques have shown high efficacy rates when applied to similar clinical problems (Jabarouti et al. 2011; Mazurowski et al. 2008; Nassar et al. 2007; Said et al. 2006; Lisboa 2002). Recent studies over biological tissue classification or similar applications subjects achieve tissue recogn...
Gespeichert in:
| Veröffentlicht in: | Biodental Engineering III S. 237 - 242 |
|---|---|
| Format: | Buchkapitel |
| Sprache: | Englisch |
| Veröffentlicht: |
United Kingdom
CRC Press
2014
Taylor & Francis Group |
| Schlagworte: | |
| ISBN: | 9781138026711, 1138026719 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Learning techniques have shown high efficacy
rates when applied to similar clinical problems
(Jabarouti et al. 2011; Mazurowski et al. 2008;
Nassar et al. 2007; Said et al. 2006; Lisboa 2002).
Recent studies over biological tissue classification
or similar applications subjects achieve tissue recognition using different segmentation approaches
such as mean shift clustering, region growing,
watersheds, and histogram thresholds (Koutsouri
et al. 2013; Anuradha et al. 2012; Kang et al. 2010;
Perez et al. 2001; Stelt et al. 1985). Furthermore,
texture analysis can be used to separate different
significant regions in digital images of human tissues or organs (Veredas et al. 2010). |
|---|---|
| ISBN: | 9781138026711 1138026719 |
| DOI: | 10.1201/b17071-44 |

