Dental tissue classification using computational intelligence and digital image analysis

Learning techniques have shown high efficacy rates when applied to similar clinical problems (Jabarouti et al. 2011; Mazurowski et al. 2008; Nassar et al. 2007; Said et al. 2006; Lisboa 2002). Recent studies over biological tissue classification or similar applications subjects achieve tissue recogn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biodental Engineering III S. 237 - 242
Format: Buchkapitel
Sprache:Englisch
Veröffentlicht: United Kingdom CRC Press 2014
Taylor & Francis Group
Schlagworte:
ISBN:9781138026711, 1138026719
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Learning techniques have shown high efficacy rates when applied to similar clinical problems (Jabarouti et al. 2011; Mazurowski et al. 2008; Nassar et al. 2007; Said et al. 2006; Lisboa 2002). Recent studies over biological tissue classification or similar applications subjects achieve tissue recognition using different segmentation approaches such as mean shift clustering, region growing, watersheds, and histogram thresholds (Koutsouri et al. 2013; Anuradha et al. 2012; Kang et al. 2010; Perez et al. 2001; Stelt et al. 1985). Furthermore, texture analysis can be used to separate different significant regions in digital images of human tissues or organs (Veredas et al. 2010).
ISBN:9781138026711
1138026719
DOI:10.1201/b17071-44