Learning to compare image patches via convolutional neural networks
In this paper we show how to learn directly from image data (i.e., without resorting to manually-designed features) a general similarity function for comparing image patches, which is a task of fundamental importance for many computer vision problems. To encode such a function, we opt for a CNN-base...
Gespeichert in:
| Veröffentlicht in: | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) S. 4353 - 4361 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2015
|
| Schlagworte: | |
| ISSN: | 1063-6919, 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper we show how to learn directly from image data (i.e., without resorting to manually-designed features) a general similarity function for comparing image patches, which is a task of fundamental importance for many computer vision problems. To encode such a function, we opt for a CNN-based model that is trained to account for a wide variety of changes in image appearance. To that end, we explore and study multiple neural network architectures, which are specifically adapted to this task. We show that such an approach can significantly outperform the state-of-the-art on several problems and benchmark datasets. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| ISSN: | 1063-6919 1063-6919 |
| DOI: | 10.1109/CVPR.2015.7299064 |