Multi-User Linearly Separable Computation: A Coding Theoretic Approach

In this work, we investigate the problem of multi-user linearly separable function computation, where N servers help compute the desired functions (jobs) of K users. In this setting each desired function can be written as a linear combination of up to L (generally non-linear) sub-functions. Each ser...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE Information Theory Workshop (ITW) s. 428 - 433
Hlavní autoři: Khalesi, Ali, Elia, Petros
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, we investigate the problem of multi-user linearly separable function computation, where N servers help compute the desired functions (jobs) of K users. In this setting each desired function can be written as a linear combination of up to L (generally non-linear) sub-functions. Each server computes some of the sub-tasks, and communicates a linear combination of its computed outputs (files) in a single-shot to some of the users, then each user linearly combines its received data in order to recover its desired function. We explore the range of the optimal computation cost via establishing a novel relationship between our problem, syndrome decoding and covering codes. The work reveals that in the limit of large N, the optimal computation cost - in the form of the maximum fraction of all servers that must compute any subfunction - is lower bounded as \gamma \geq H_q^{ - 1}\left( {\frac{{{\log }_q}(L)}}{N}} \right), for any fixed log q (L)/N. The result reveals the role of the computational rate log q (L)/N, which cannot exceed what one might call the computational capacity H q (γ) of the system.
DOI:10.1109/ITW54588.2022.9965859