A quasi-linear irreducibility test in K[[x]][y]
We provide an irreducibility test in the ring K [ [ x ] ] [ y ] whose complexity is quasi-linear with respect to the discriminant valuation, assuming the input polynomial F is square-free and K is a perfect field of characteristic not dividing deg ( F ) . The algorithm uses the theory of approximate...
Uloženo v:
| Vydáno v: | Computational complexity Ročník 31; číslo 1 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.06.2022
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 1016-3328, 1420-8954 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We provide an irreducibility test in the ring
K
[
[
x
]
]
[
y
]
whose complexity is quasi-linear with respect to the discriminant valuation, assuming the input polynomial
F
is square-free and
K
is a perfect field of characteristic not dividing
deg
(
F
)
. The algorithm uses the theory of approximate roots and may be seen as a generalisation of Abhyankar's irreducibility criterion to the case of non-algebraically closed residue fields. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1016-3328 1420-8954 |
| DOI: | 10.1007/s00037-022-00221-w |