GPU-Accelerated Tree-Search in Chapel Versus CUDA and HIP
In the context of exascale programming, the PGAS-based Chapel is among the rare languages targeting the holistic handling of high-performance computing issues including the productivity-aware harnessing of Nvidia and AMD GPUs. In this paper, we propose a pioneering proof-of-concept dealing with this...
Uloženo v:
| Vydáno v: | 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) s. 872 - 879 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
27.05.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the context of exascale programming, the PGAS-based Chapel is among the rare languages targeting the holistic handling of high-performance computing issues including the productivity-aware harnessing of Nvidia and AMD GPUs. In this paper, we propose a pioneering proof-of-concept dealing with this latter issue in the context of tree-based exact optimization. Actually, we revisit the design and implementation of a generic multi-pool GPU-accelerated tree-search algorithm using Chapel. This algorithm is instantiated on the backtracking method and experimented on the N-Queens problem. For performance evaluation, the Chapel-based approach is compared to Nvidia CUDA and AMD HIP low-level counterparts. The reported results show that in a single-GPU setting, the high GPU abstraction of Chapel results in a loss of only 8% (resp. 16%) compared to CUDA (resp. HIP). In a multi-GPU setting, up to 80% (resp. 71%) of the baseline speedup is achieved for coarse-grained problem instances on Nvidia (resp. AMD) GPUs. |
|---|---|
| DOI: | 10.1109/IPDPSW63119.2024.00156 |