Attribute-driven edge bundling for general graphs with applications in trail analysis

Edge bundling methods reduce visual clutter of dense and occluded graphs. However, existing bundling techniques either ignore edge properties such as direction and data attributes, or are otherwise computationally not scalable, which makes them unsuitable for tasks such as exploration of large traje...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Pacific Visualization Symposium s. 39 - 46
Hlavní autoři: Peysakhovich, Vsevolod, Hurter, Christophe, Telea, Alexandru
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2015
Témata:
ISSN:2165-8765
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Edge bundling methods reduce visual clutter of dense and occluded graphs. However, existing bundling techniques either ignore edge properties such as direction and data attributes, or are otherwise computationally not scalable, which makes them unsuitable for tasks such as exploration of large trajectory datasets. We present a new framework to generate bundled graph layouts according to any numerical edge attributes such as directions, timestamps or weights. We propose a GPU-based implementation linear in number of edges, which makes our algorithm applicable to large datasets. We demonstrate our method with applications in the analysis of aircraft trajectory datasets and eye-movement traces.
ISSN:2165-8765
DOI:10.1109/PACIFICVIS.2015.7156354