HPC Storage Service Autotuning Using Variational- Autoencoder -Guided Asynchronous Bayesian Optimization
Distributed data storage services tailored to specific applications have grown popular in the high-performance computing (HPC) community as a way to address I/O and storage challenges. These services offer a variety of specific interfaces, semantics, and data representations. They also expose many t...
Saved in:
| Published in: | Proceedings / IEEE International Conference on Cluster Computing pp. 381 - 393 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.09.2022
|
| Subjects: | |
| ISSN: | 2168-9253 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Distributed data storage services tailored to specific applications have grown popular in the high-performance computing (HPC) community as a way to address I/O and storage challenges. These services offer a variety of specific interfaces, semantics, and data representations. They also expose many tuning parameters, making it difficult for their users to find the best configuration for a given workload and platform. To address this issue, we develop a novel variational-autoencoder-guided asynchronous Bayesian optimization method to tune HPC storage service parameters. Our approach uses transfer learning to leverage prior tuning results and use a dynamically updated surrogate model to explore the large parameter search space in a systematic way. We implement our approach within the DeepHyper open-source framework, and apply it to the autotuning of a high-energy physics workflow on Argonne's Theta supercomputer. We show that our transfer-learning approach enables a more than 40 x search speedup over random search, compared with a 2.5 x to 10 x speedup when not using transfer learning. Additionally, we show that our approach is on par with state-of-the-art autotuning frameworks in speed and outperforms them in resource utilization and parallelization capabilities. |
|---|---|
| AbstractList | Distributed data storage services tailored to specific applications have grown popular in the high-performance computing (HPC) community as a way to address I/O and storage challenges. These services offer a variety of specific interfaces, semantics, and data representations. They also expose many tuning parameters, making it difficult for their users to find the best configuration for a given workload and platform. To address this issue, we develop a novel variational-autoencoder-guided asynchronous Bayesian optimization method to tune HPC storage service parameters. Our approach uses transfer learning to leverage prior tuning results and use a dynamically updated surrogate model to explore the large parameter search space in a systematic way. We implement our approach within the DeepHyper open-source framework, and apply it to the autotuning of a high-energy physics workflow on Argonne's Theta supercomputer. We show that our transfer-learning approach enables a more than 40 x search speedup over random search, compared with a 2.5 x to 10 x speedup when not using transfer learning. Additionally, we show that our approach is on par with state-of-the-art autotuning frameworks in speed and outperforms them in resource utilization and parallelization capabilities. |
| Author | Dorier, Matthieu Balaprakash, Prasanna Madireddy, Sandeep Ross, Rob Ramesh, Srinivasan Koo, Jaehoon Egele, Romain Malony, Allen D. |
| Author_xml | – sequence: 1 givenname: Matthieu surname: Dorier fullname: Dorier, Matthieu email: mdorier@anl.gov organization: Argonne National Laboratory,Lemont,IL – sequence: 2 givenname: Romain surname: Egele fullname: Egele, Romain email: romain.egele@universite-paris-saclay.fr organization: Argonne National Laboratory,Lemont,IL – sequence: 3 givenname: Prasanna surname: Balaprakash fullname: Balaprakash, Prasanna email: pbalapra@anl.gov organization: Argonne National Laboratory,Lemont,IL – sequence: 4 givenname: Jaehoon surname: Koo fullname: Koo, Jaehoon email: jkoo@anl.gov organization: Argonne National Laboratory,Lemont,IL – sequence: 5 givenname: Sandeep surname: Madireddy fullname: Madireddy, Sandeep email: smadireddy@anl.gov organization: Argonne National Laboratory,Lemont,IL – sequence: 6 givenname: Srinivasan surname: Ramesh fullname: Ramesh, Srinivasan email: sramesh@cs.uorcgon.cdu organization: University of Oregon,Eugene,OR – sequence: 7 givenname: Allen D. surname: Malony fullname: Malony, Allen D. email: malony@cs.uorcgon.cdu organization: University of Oregon,Eugene,OR – sequence: 8 givenname: Rob surname: Ross fullname: Ross, Rob email: rross@anl.gov organization: Argonne National Laboratory,Lemont,IL |
| BookMark | eNotjM1OAjEURqvRRECfwIV9gcH-zLR0iRMEExKMgFtymd5CDbRkOmMyPr2Kbs63OPlOn1yFGJCQB86GnDPzWM7Xy9XkreA5l0PBhBgyxnJzQfpcqSI3o0KxS9ITXI0yIwp5Q_opfTAmtWSqR_az15Ium1jDDukS609fIR23TWza4MOOrtMv36H20PgY4JCdLYYqWqxpNm29RUvHqQvVvo4htok-QYfJQ6CLU-OP_uv8vCXXDg4J7_53QNbPk1U5y-aL6Us5nmd7IXWTYZUbdLmtCjDbEXBTaZQalBMgLRpVOMMt_7HSKdCWIVdbB3rrLLOWCSMH5P6v6xFxc6r9EepuYwwXWmj5DTKdXKM |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CLUSTER51413.2022.00049 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1665498560 9781665498562 |
| EISSN | 2168-9253 |
| EndPage | 393 |
| ExternalDocumentID | 9912727 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-h237t-ec49ef4dc5a9b8a19c7e37a6f2a3de965f91d1c5a3f6a7d0e16bfa7bfd0dd0293 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920273100034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:18:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h237t-ec49ef4dc5a9b8a19c7e37a6f2a3de965f91d1c5a3f6a7d0e16bfa7bfd0dd0293 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9912727 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Sept. |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept. |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / IEEE International Conference on Cluster Computing |
| PublicationTitleAbbrev | CLUSTER |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0037306 |
| Score | 2.2716343 |
| Snippet | Distributed data storage services tailored to specific applications have grown popular in the high-performance computing (HPC) community as a way to address... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 381 |
| SubjectTerms | Autotuning Bayes methods Bayesian Optimization DeepHyper HPC I/O Mochi Probability distribution Resource management Semantics Storage Supercomputers Systematics Transfer learning |
| Title | HPC Storage Service Autotuning Using Variational- Autoencoder -Guided Asynchronous Bayesian Optimization |
| URI | https://ieeexplore.ieee.org/document/9912727 |
| WOSCitedRecordID | wos000920273100034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6AePCECsZ3evDoynYf7faIROVgkAQx3Ei3Mw0cZA3smvDvbXcXjIkXb02btEkf8-p88xFyK5gCn6eJp2NHYcYh9FTqR16gIGWaIySJLskmxGiUzGZy3CB3eywMIpbJZ3jvmuVfPmS6cKGynrVlAqtvm6QpBK-wWjupG9qbyuv8LebL3uBlOrH2oDUHWGi9wKAqyyl_caiUKuSp_b_Fj0j3B4tHx3stc0wauDoh7R0ZA63fZocshuMBnVgP2goIWksA2i_yLC9c6IOWuQH03brGdfjPK0ddHUuw83jPxRIQaH-zXWlXMDcrNvRBbdGBLOmrFSwfNWKzS6ZPj2-DoVfTKHiLIBS5hzqSaCLQsZJpopjUAkOhuAlUCCh5bCQDZkdDw5UAHxlPjRKpAR_At-bAKWmtshWeERomIJMoNoAmjjBQqWG-MSlanQbKOrjnpOM2bv5ZVcqY13t28Xf3JTl0J1NlbF2RVr4u8Joc6K98uVnflMf7DVnRqq4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4QTfSECsa3PXh0ZbvvHpGIGBFJAMONdDvTwMFdA7sm_HvbZcGYePHWtEmb9DGvzjcfIbchE2AHcWRJ31CYBeBaIrY9yxEQMxkgRJEsyCbCfj-aTPigQu62WBhELJLP8N40i798SGVuQmVNbcs4Wt_ukF3DnFWitTZy19V3NSgzuJjNm-3eeKgtQm0QMFf7gc66MCf_xaJSKJFO7X_LH5LGDxqPDrZ65ohUMDkmtQ0dAy1fZ53MuoM2HWofWosIWsoA2sqzNMtN8IMW2QH0XTvHZQDQKkZNJUvQ81hP-RwQaGu5SqQpmZvmS_ogVmhglvRNi5aPErPZIOPO46jdtUoiBWvmuGFmofQ4Kg-kL3gcCcZliG4oAuUIF5AHvuIMmB51VSBCsJEFsRJhrMAGsLVBcEKqSZrgKaFuBDzyfAWofA8dEStmKxWj1mogtIt7Rupm46af61oZ03LPzv_uviH73dFrb9p77r9ckANzSuv8rUtSzRY5XpE9-ZXNl4vr4qi_AWc0rfc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Cluster+Computing&rft.atitle=HPC+Storage+Service+Autotuning+Using+Variational-+Autoencoder+-Guided+Asynchronous+Bayesian+Optimization&rft.au=Dorier%2C+Matthieu&rft.au=Egele%2C+Romain&rft.au=Balaprakash%2C+Prasanna&rft.au=Koo%2C+Jaehoon&rft.date=2022-09-01&rft.pub=IEEE&rft.eissn=2168-9253&rft.spage=381&rft.epage=393&rft_id=info:doi/10.1109%2FCLUSTER51413.2022.00049&rft.externalDocID=9912727 |