HPC Storage Service Autotuning Using Variational- Autoencoder -Guided Asynchronous Bayesian Optimization
Distributed data storage services tailored to specific applications have grown popular in the high-performance computing (HPC) community as a way to address I/O and storage challenges. These services offer a variety of specific interfaces, semantics, and data representations. They also expose many t...
Saved in:
| Published in: | Proceedings / IEEE International Conference on Cluster Computing pp. 381 - 393 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.09.2022
|
| Subjects: | |
| ISSN: | 2168-9253 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Distributed data storage services tailored to specific applications have grown popular in the high-performance computing (HPC) community as a way to address I/O and storage challenges. These services offer a variety of specific interfaces, semantics, and data representations. They also expose many tuning parameters, making it difficult for their users to find the best configuration for a given workload and platform. To address this issue, we develop a novel variational-autoencoder-guided asynchronous Bayesian optimization method to tune HPC storage service parameters. Our approach uses transfer learning to leverage prior tuning results and use a dynamically updated surrogate model to explore the large parameter search space in a systematic way. We implement our approach within the DeepHyper open-source framework, and apply it to the autotuning of a high-energy physics workflow on Argonne's Theta supercomputer. We show that our transfer-learning approach enables a more than 40 x search speedup over random search, compared with a 2.5 x to 10 x speedup when not using transfer learning. Additionally, we show that our approach is on par with state-of-the-art autotuning frameworks in speed and outperforms them in resource utilization and parallelization capabilities. |
|---|---|
| ISSN: | 2168-9253 |
| DOI: | 10.1109/CLUSTER51413.2022.00049 |