Visual tracking via incremental Log-Euclidean Riemannian subspace learning
Recently, a novel Log-Euclidean Riemannian metric is proposed for statistics on symmetric positive definite (SPD) matrices. Under this metric, distances and Riemannian means take a much simpler form than the widely used affine-invariant Riemannian metric. Based on the Log-Euclidean Riemannian metric...
Saved in:
| Published in: | 2008 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2008
|
| Subjects: | |
| ISBN: | 9781424422425, 1424422426 |
| ISSN: | 1063-6919, 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Recently, a novel Log-Euclidean Riemannian metric is proposed for statistics on symmetric positive definite (SPD) matrices. Under this metric, distances and Riemannian means take a much simpler form than the widely used affine-invariant Riemannian metric. Based on the Log-Euclidean Riemannian metric, we develop a tracking framework in this paper. In the framework, the covariance matrices of image features in the five modes are used to represent object appearance. Since a nonsingular covariance matrix is a SPD matrix lying on a connected Riemannian manifold, the Log-Euclidean Riemannian metric is used for statistics on the covariance matrices of image features. Further, we present an effective online Log-Euclidean Riemannian subspace learning algorithm which models the appearance changes of an object by incrementally learning a low-order Log-Euclidean eigenspace representation through adaptively updating the sample mean and eigenbasis. Tracking is then led by the Bayesian state inference framework in which a particle filter is used for propagating sample distributions over the time. Theoretic analysis and experimental evaluations demonstrate the promise and effectiveness of the proposed framework. |
|---|---|
| ISBN: | 9781424422425 1424422426 |
| ISSN: | 1063-6919 1063-6919 |
| DOI: | 10.1109/CVPR.2008.4587516 |

