CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: Auditory (Cochlea) and visual (Retina) cognitive processing applications

In this work, we demonstrate an original methodology to use Conductive-Bridge RAM (CBRAM) devices as binary synapses in low-power stochastic neuromorphic systems. A new circuit architecture, programming strategy and probabilistic STDP learning rule are proposed. We show, for the first time, how the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2012 International Electron Devices Meeting s. 10.3.1 - 10.3.4
Hlavní autori: Suri, M., Bichler, O., Querlioz, D., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., DeSalvo, B.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2012
Predmet:
ISBN:9781467348720, 1467348724
ISSN:0163-1918
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this work, we demonstrate an original methodology to use Conductive-Bridge RAM (CBRAM) devices as binary synapses in low-power stochastic neuromorphic systems. A new circuit architecture, programming strategy and probabilistic STDP learning rule are proposed. We show, for the first time, how the intrinsic CBRAM device switching probability at ultra-low power can be exploited to implement probabilistic learning rule. Two complex applications are demonstrated: real-time auditory (from 64-channel human cochlea) and visual (from mammalian visual cortex) pattern extraction. A high accuracy (audio pattern sensitivity >2, video detection rate >95%) and ultra-low synaptic-power dissipation (audio 0.55μW, video 74.2μW) are obtained.
ISBN:9781467348720
1467348724
ISSN:0163-1918
DOI:10.1109/IEDM.2012.6479017