CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: Auditory (Cochlea) and visual (Retina) cognitive processing applications
In this work, we demonstrate an original methodology to use Conductive-Bridge RAM (CBRAM) devices as binary synapses in low-power stochastic neuromorphic systems. A new circuit architecture, programming strategy and probabilistic STDP learning rule are proposed. We show, for the first time, how the...
Uložené v:
| Vydané v: | 2012 International Electron Devices Meeting s. 10.3.1 - 10.3.4 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2012
|
| Predmet: | |
| ISBN: | 9781467348720, 1467348724 |
| ISSN: | 0163-1918 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this work, we demonstrate an original methodology to use Conductive-Bridge RAM (CBRAM) devices as binary synapses in low-power stochastic neuromorphic systems. A new circuit architecture, programming strategy and probabilistic STDP learning rule are proposed. We show, for the first time, how the intrinsic CBRAM device switching probability at ultra-low power can be exploited to implement probabilistic learning rule. Two complex applications are demonstrated: real-time auditory (from 64-channel human cochlea) and visual (from mammalian visual cortex) pattern extraction. A high accuracy (audio pattern sensitivity >2, video detection rate >95%) and ultra-low synaptic-power dissipation (audio 0.55μW, video 74.2μW) are obtained. |
|---|---|
| ISBN: | 9781467348720 1467348724 |
| ISSN: | 0163-1918 |
| DOI: | 10.1109/IEDM.2012.6479017 |

