Sparse random linear network coding for data compression in WSNs

This paper addresses the information theoretical analysis of data compression achieved by random linear network coding in wireless sensor networks. A sparse network coding matrix is considered with columns having possibly different sparsity factors. For stationary and ergodic sources, necessary and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings / IEEE International Symposium on Information Theory S. 2729 - 2733
Hauptverfasser: Wenjie Li, Bassi, Francesca, Kieffer, Michel
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2016
Schlagworte:
ISSN:2157-8117
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the information theoretical analysis of data compression achieved by random linear network coding in wireless sensor networks. A sparse network coding matrix is considered with columns having possibly different sparsity factors. For stationary and ergodic sources, necessary and sufficient conditions are provided on the number of required measurements to achieve asymptotically vanishing reconstruction error. To ensure the asymptotically optimal compression ratio, the sparsity factor can be arbitrary close to zero in absence of additive noise. In presence of noise, a sufficient condition on the sparsity of the coding matrix is also proposed.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2157-8117
DOI:10.1109/ISIT.2016.7541795