Sparse random linear network coding for data compression in WSNs

This paper addresses the information theoretical analysis of data compression achieved by random linear network coding in wireless sensor networks. A sparse network coding matrix is considered with columns having possibly different sparsity factors. For stationary and ergodic sources, necessary and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / IEEE International Symposium on Information Theory s. 2729 - 2733
Hlavní autoři: Wenjie Li, Bassi, Francesca, Kieffer, Michel
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.07.2016
Témata:
ISSN:2157-8117
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper addresses the information theoretical analysis of data compression achieved by random linear network coding in wireless sensor networks. A sparse network coding matrix is considered with columns having possibly different sparsity factors. For stationary and ergodic sources, necessary and sufficient conditions are provided on the number of required measurements to achieve asymptotically vanishing reconstruction error. To ensure the asymptotically optimal compression ratio, the sparsity factor can be arbitrary close to zero in absence of additive noise. In presence of noise, a sufficient condition on the sparsity of the coding matrix is also proposed.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2157-8117
DOI:10.1109/ISIT.2016.7541795