Sparse random linear network coding for data compression in WSNs

This paper addresses the information theoretical analysis of data compression achieved by random linear network coding in wireless sensor networks. A sparse network coding matrix is considered with columns having possibly different sparsity factors. For stationary and ergodic sources, necessary and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings / IEEE International Symposium on Information Theory s. 2729 - 2733
Hlavní autori: Wenjie Li, Bassi, Francesca, Kieffer, Michel
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2016
Predmet:
ISSN:2157-8117
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper addresses the information theoretical analysis of data compression achieved by random linear network coding in wireless sensor networks. A sparse network coding matrix is considered with columns having possibly different sparsity factors. For stationary and ergodic sources, necessary and sufficient conditions are provided on the number of required measurements to achieve asymptotically vanishing reconstruction error. To ensure the asymptotically optimal compression ratio, the sparsity factor can be arbitrary close to zero in absence of additive noise. In presence of noise, a sufficient condition on the sparsity of the coding matrix is also proposed.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2157-8117
DOI:10.1109/ISIT.2016.7541795