Feature selection combining genetic algorithm and Adaboost classifiers

This paper presents a fast method using simple genetic algorithms (GAs) for features selection. Unlike traditional approaches using GAs, we have used the combination of Adaboost classifiers to evaluate an individual of the population. So, the fitness function we have used is defined by the error rat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2008 19th International Conference on Pattern Recognition s. 1 - 4
Hlavní autori: Chouaib, H., Terrades, O.R., Tabbone, S., Cloppet, F., Vincent, N.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2008
Predmet:
ISBN:9781424421749, 1424421748
ISSN:1051-4651
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents a fast method using simple genetic algorithms (GAs) for features selection. Unlike traditional approaches using GAs, we have used the combination of Adaboost classifiers to evaluate an individual of the population. So, the fitness function we have used is defined by the error rate of this combination. This approach has been implemented and tested on the MNIST database and the results confirm the effectiveness and the robustness of the proposed approach.
ISBN:9781424421749
1424421748
ISSN:1051-4651
DOI:10.1109/ICPR.2008.4761264