Feature selection combining genetic algorithm and Adaboost classifiers

This paper presents a fast method using simple genetic algorithms (GAs) for features selection. Unlike traditional approaches using GAs, we have used the combination of Adaboost classifiers to evaluate an individual of the population. So, the fitness function we have used is defined by the error rat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2008 19th International Conference on Pattern Recognition s. 1 - 4
Hlavní autoři: Chouaib, H., Terrades, O.R., Tabbone, S., Cloppet, F., Vincent, N.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2008
Témata:
ISBN:9781424421749, 1424421748
ISSN:1051-4651
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a fast method using simple genetic algorithms (GAs) for features selection. Unlike traditional approaches using GAs, we have used the combination of Adaboost classifiers to evaluate an individual of the population. So, the fitness function we have used is defined by the error rate of this combination. This approach has been implemented and tested on the MNIST database and the results confirm the effectiveness and the robustness of the proposed approach.
ISBN:9781424421749
1424421748
ISSN:1051-4651
DOI:10.1109/ICPR.2008.4761264