Recognisability Equals Definability for Finitely Representable Matroids of Bounded Path-Width
Let {\mathbb{F}} be a finite field. We prove that there is an MSO-transduction which, given an {\mathbb{F}}-representable matroid of path-width k, produces a branch-decomposition of width at most f(k), for some function f. As a corollary, any recognizable property of {\mathbb{F}}-representable matro...
Saved in:
| Published in: | 2025 40th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) pp. 678 - 690 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
23.06.2025
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Let {\mathbb{F}} be a finite field. We prove that there is an MSO-transduction which, given an {\mathbb{F}}-representable matroid of path-width k, produces a branch-decomposition of width at most f(k), for some function f. As a corollary, any recognizable property of {\mathbb{F}}-representable matroids with bounded path-width is definable in MSO logic, and therefore recognizability is equivalent to MSO-definability on classes of {\mathbb{F}}-representable matroids of bounded path-width. This generalizes the result of Bojańczyk, Grohe and Pilipczuk [Logical Methods in Computer Science 17(1), 2021] which asserts the equivalence of the two notions on graphs of bounded linear clique-width. |
|---|---|
| AbstractList | Let {\mathbb{F}} be a finite field. We prove that there is an MSO-transduction which, given an {\mathbb{F}}-representable matroid of path-width k, produces a branch-decomposition of width at most f(k), for some function f. As a corollary, any recognizable property of {\mathbb{F}}-representable matroids with bounded path-width is definable in MSO logic, and therefore recognizability is equivalent to MSO-definability on classes of {\mathbb{F}}-representable matroids of bounded path-width. This generalizes the result of Bojańczyk, Grohe and Pilipczuk [Logical Methods in Computer Science 17(1), 2021] which asserts the equivalence of the two notions on graphs of bounded linear clique-width. |
| Author | Oum, Sang-il Guillon, Bruno Kim, Eun Jung Campbell, Rutger Kante, Mamadou Moustapha |
| Author_xml | – sequence: 1 givenname: Rutger surname: Campbell fullname: Campbell, Rutger email: rutger@ibs.re.kr organization: Institute for Basic Science,Discrete Mathematics Group,Daejeon,Korea – sequence: 2 givenname: Bruno surname: Guillon fullname: Guillon, Bruno email: bruno.guillon@uca.fr organization: Université Clermont Auvergne,Clermont Auvergne INP, LIMOS, CNRS,Clermont-Ferrand,France – sequence: 3 givenname: Mamadou Moustapha surname: Kante fullname: Kante, Mamadou Moustapha email: mamadou.kante@uca.fr organization: Université Clermont Auvergne,Clermont Auvergne INP, LIMOS, CNRS,Clermont-Ferrand,France – sequence: 4 givenname: Eun Jung surname: Kim fullname: Kim, Eun Jung email: eunjung.kim@kaist.ac.kr organization: Institute for Basic Science,School of Computing, KAIST and Discrete Mathematics Group,Daejeon,Korea – sequence: 5 givenname: Sang-il surname: Oum fullname: Oum, Sang-il email: sangil@ibs.re.kr organization: Institute for Basic Science,Discrete Mathematics Group,Daejeon,Korea |
| BookMark | eNo1zL1OwzAUQGEjwQClb9DBL5Dgv9jxCKWllYJApRITqm7ia2IpOCVxh7w9lYDpSN9wbshl7CMSsuAs55zZu2q7fNOFkjIXTBQ5Y6wwF2RujS2l5IWxZ7gmHzts-s8YRqhDF9JEV98n6Eb6iD7Ef_P9QNchhoTdRHd4HHDEmKDukD5DGvrgRtp7-tCfokNHXyG12Xtwqb0lV_58w_lfZ2S_Xu2Xm6x6edou76us5cKkjGtmjWqaWttGgQKrmUAvSgXgPJfeaGsFgK8L3ShXQ4nAmNMl4w04U8gZWfxuAyIejkP4gmE6cM5LLaWSPyCKUrc |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/LICS65433.2025.00057 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798331579005 |
| EndPage | 690 |
| ExternalDocumentID | 11186334 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-h127t-160974ccb69c4a4a9602ef284aadf13f76992aafb56c4dba8ea00d6801cad753 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 29 06:13:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h127t-160974ccb69c4a4a9602ef284aadf13f76992aafb56c4dba8ea00d6801cad753 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_11186334 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-23 |
| PublicationDateYYYYMMDD | 2025-06-23 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 40th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) |
| PublicationTitleAbbrev | LICS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.3024516 |
| Snippet | Let {\mathbb{F}} be a finite field. We prove that there is an MSO-transduction which, given an {\mathbb{F}}-representable matroid of path-width k, produces a... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 678 |
| SubjectTerms | branch-width Computer science decomposition-width definability Galois fields Logic matroid monadic second-order logic path-width recognisability transduction |
| Title | Recognisability Equals Definability for Finitely Representable Matroids of Bounded Path-Width |
| URI | https://ieeexplore.ieee.org/document/11186334 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2EePCEHxi_04PXyna32-5eRYgmSAgS5WLIbDsNJAQMLCb8e9vdRePBg7emhzaZppk30_f6CLk1mXK4W0mmFQRMSM4Z6MCwIFUO_aMFXtgBvfZUv5-Mx-mgEqsXWhhELMhneOeHxVu-WeqNb5W13L1MZBSJGqkpJUuxViWH40Ha6j21X7xUMnJlX-hbJUH82zSlyBndxj93OyTNH_UdHXznlSOyh4tj0tjZL9DqNp6Q92FJ_ik_yc23tOMVkmv6gNYroso5h0lpd-aB5XxLhwXt1bPFsznSZ98Gn5k1XVp6792V0NCBA4TsbWbyaZOMup1R-5FVbglsykOVMy5dfIXWmUy1AAGuNAnRuuwDYCyPrJJpGgLYLJZamAwShCAw0mUoDcYVLaekvlgu8IxQtCKOTaJVBOAW1JlOY4wTziOuEUJxTpo-WpOP8j-MyS5QF3_MX5IDfyCeYBVGV6SerzZ4Tfb1Zz5br26KU_wCTnGhog |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UTfSEHxi_7cHrSrvbbXevIgTiQggS5WJIt52GTQgYWEz497a7oPHgwVvTQ5tM08yb6Xt9CN3rVFjcLbinhCQe45R6UhHtkVhY9A9G0sIO6DURvV40GsX9jVi90MIAQEE-gwc3LN7y9VytXKusbu9lxIOA7aK9kDGflHKtjSCOkriedBovTiwZ2MLPd80SEv62TSmyRqv6z_2OUO1Hf4f735nlGO3A7ARVtwYMeHMfT9H7oKT_lN_k5mvcdBrJJX4C4zRR5ZxFpbiVOWg5XeNBQXx1fPF0CrjrGuGZXuK5wY_OXwk07ltI6L1lOp_U0LDVHDba3sYvwZtQX-Qe5TbCTKmUx4pJJm1x4oOx-UdKbWhgBI9jX0qThlwxncoIJCGa2xylpLZlyxmqzOYzOEcYDAtDHSkRSGkXVKmKQwgjSgOqQPrsAtVctMYf5Y8Y422gLv-Yv0MH7WE3GSed3vMVOnSH4-hWfnCNKvliBTdoX33m2XJxW5zoF-DVpOk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+40th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science+%28LICS%29&rft.atitle=Recognisability+Equals+Definability+for+Finitely+Representable+Matroids+of+Bounded+Path-Width&rft.au=Campbell%2C+Rutger&rft.au=Guillon%2C+Bruno&rft.au=Kante%2C+Mamadou+Moustapha&rft.au=Kim%2C+Eun+Jung&rft.date=2025-06-23&rft.pub=IEEE&rft.spage=678&rft.epage=690&rft_id=info:doi/10.1109%2FLICS65433.2025.00057&rft.externalDocID=11186334 |