Recognisability Equals Definability for Finitely Representable Matroids of Bounded Path-Width

Let {\mathbb{F}} be a finite field. We prove that there is an MSO-transduction which, given an {\mathbb{F}}-representable matroid of path-width k, produces a branch-decomposition of width at most f(k), for some function f. As a corollary, any recognizable property of {\mathbb{F}}-representable matro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 40th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) s. 678 - 690
Hlavní autoři: Campbell, Rutger, Guillon, Bruno, Kante, Mamadou Moustapha, Kim, Eun Jung, Oum, Sang-il
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 23.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Let {\mathbb{F}} be a finite field. We prove that there is an MSO-transduction which, given an {\mathbb{F}}-representable matroid of path-width k, produces a branch-decomposition of width at most f(k), for some function f. As a corollary, any recognizable property of {\mathbb{F}}-representable matroids with bounded path-width is definable in MSO logic, and therefore recognizability is equivalent to MSO-definability on classes of {\mathbb{F}}-representable matroids of bounded path-width. This generalizes the result of Bojańczyk, Grohe and Pilipczuk [Logical Methods in Computer Science 17(1), 2021] which asserts the equivalence of the two notions on graphs of bounded linear clique-width.
AbstractList Let {\mathbb{F}} be a finite field. We prove that there is an MSO-transduction which, given an {\mathbb{F}}-representable matroid of path-width k, produces a branch-decomposition of width at most f(k), for some function f. As a corollary, any recognizable property of {\mathbb{F}}-representable matroids with bounded path-width is definable in MSO logic, and therefore recognizability is equivalent to MSO-definability on classes of {\mathbb{F}}-representable matroids of bounded path-width. This generalizes the result of Bojańczyk, Grohe and Pilipczuk [Logical Methods in Computer Science 17(1), 2021] which asserts the equivalence of the two notions on graphs of bounded linear clique-width.
Author Oum, Sang-il
Guillon, Bruno
Kim, Eun Jung
Campbell, Rutger
Kante, Mamadou Moustapha
Author_xml – sequence: 1
  givenname: Rutger
  surname: Campbell
  fullname: Campbell, Rutger
  email: rutger@ibs.re.kr
  organization: Institute for Basic Science,Discrete Mathematics Group,Daejeon,Korea
– sequence: 2
  givenname: Bruno
  surname: Guillon
  fullname: Guillon, Bruno
  email: bruno.guillon@uca.fr
  organization: Université Clermont Auvergne,Clermont Auvergne INP, LIMOS, CNRS,Clermont-Ferrand,France
– sequence: 3
  givenname: Mamadou Moustapha
  surname: Kante
  fullname: Kante, Mamadou Moustapha
  email: mamadou.kante@uca.fr
  organization: Université Clermont Auvergne,Clermont Auvergne INP, LIMOS, CNRS,Clermont-Ferrand,France
– sequence: 4
  givenname: Eun Jung
  surname: Kim
  fullname: Kim, Eun Jung
  email: eunjung.kim@kaist.ac.kr
  organization: Institute for Basic Science,School of Computing, KAIST and Discrete Mathematics Group,Daejeon,Korea
– sequence: 5
  givenname: Sang-il
  surname: Oum
  fullname: Oum, Sang-il
  email: sangil@ibs.re.kr
  organization: Institute for Basic Science,Discrete Mathematics Group,Daejeon,Korea
BookMark eNo1zL1OwzAUQGEjwQClb9DBL5Dgv9jxCKWllYJApRITqm7ia2IpOCVxh7w9lYDpSN9wbshl7CMSsuAs55zZu2q7fNOFkjIXTBQ5Y6wwF2RujS2l5IWxZ7gmHzts-s8YRqhDF9JEV98n6Eb6iD7Ef_P9QNchhoTdRHd4HHDEmKDukD5DGvrgRtp7-tCfokNHXyG12Xtwqb0lV_58w_lfZ2S_Xu2Xm6x6edou76us5cKkjGtmjWqaWttGgQKrmUAvSgXgPJfeaGsFgK8L3ShXQ4nAmNMl4w04U8gZWfxuAyIejkP4gmE6cM5LLaWSPyCKUrc
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS65433.2025.00057
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331579005
EndPage 690
ExternalDocumentID 11186334
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-h127t-160974ccb69c4a4a9602ef284aadf13f76992aafb56c4dba8ea00d6801cad753
IEDL.DBID RIE
IngestDate Wed Oct 29 06:13:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h127t-160974ccb69c4a4a9602ef284aadf13f76992aafb56c4dba8ea00d6801cad753
PageCount 13
ParticipantIDs ieee_primary_11186334
PublicationCentury 2000
PublicationDate 2025-June-23
PublicationDateYYYYMMDD 2025-06-23
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-23
  day: 23
PublicationDecade 2020
PublicationTitle 2025 40th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
PublicationTitleAbbrev LICS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.302356
Snippet Let {\mathbb{F}} be a finite field. We prove that there is an MSO-transduction which, given an {\mathbb{F}}-representable matroid of path-width k, produces a...
SourceID ieee
SourceType Publisher
StartPage 678
SubjectTerms branch-width
Computer science
decomposition-width
definability
Galois fields
Logic
matroid
monadic second-order logic
path-width
recognisability
transduction
Title Recognisability Equals Definability for Finitely Representable Matroids of Bounded Path-Width
URI https://ieeexplore.ieee.org/document/11186334
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA22ePBUPyp-k4PX2Gw2m2yu1hYFLaUW7EXKbD7oQmml3Qr99ya7W8WDB28hl0CGZOZN3stD6BayNKNOCmI5V4QLLojSDohyQCkwf1laXppNyMEgnUzUsBarl1oYa21JPrN3YVi-5Zul3oRWWcefy1TEMW-ghpSiEmvVcriIqs7zU_c1SCVjD_tYaJXQ5LdpSpkz-q1_rnaI2j_qOzz8zitHaM8ujlFrZ7-A69N4gt5HFfmn-iS32OJeUEiu8YN1QRFVzfmaFPfzUFjOt3hU0l4DWzybW_wS2uC5WeOlw_fBXckaPPQFIXnLTTFro3G_N-4-ktotgcwiJgsSCeqxgdaZUJoDBw9NmHU--wAYF8U-HkoxAJclQnOTQWp9NIzwGUqD8aDlFDUXy4U9QxhkpCnomGaWcQ1RShMLkEjnoV3CQJ6jdtit6Uf1H8Z0t1EXf8xfooMQkECwYvEVaharjb1G-_qzyNermzKKXwwGoZ4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UTfSEHxi_7cFrtdvtdrdXEQIRCEESuRgy24-wCQEDiwn_3nYXNB48eGt6adJJO_Om7_UhdA9pklIbC2I4l4QLLohUFoi0QCkwd1kaXphNxL1eMhrJ_kasXmhhjDEF-cw8-GHxlq_nauVbZY_uXCYiDPku2os4Z7SUa20EcQGVj512_dWLJUMH_JhvltDot21KkTWa1X-ud4RqP_o73P_OLMdox8xOUHVrwIA35_EUvQ9K-k_5TW6-xg2vkVziZ2O9Jqqcc1Upbma-tJyu8aAgvnq-eDo1uOsb4Zle4rnFT95fyWjcdyUhect0PqmhYbMxrLfIxi-BTAIW5yQQ1KEDpVIhFQcODpwwY13-AdA2CF1EpGQANo2E4jqFxLh4aOFylALtYMsZqszmM3OOMMSBoqBCmhrGFQQJjQxAFFsH7iIG8QWq-d0af5Q_Yoy3G3X5x_wdOmgNu51xp917uUKHPjiebsXCa1TJFytzg_bVZ54tF7dFRL8AnxKk5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+40th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science+%28LICS%29&rft.atitle=Recognisability+Equals+Definability+for+Finitely+Representable+Matroids+of+Bounded+Path-Width&rft.au=Campbell%2C+Rutger&rft.au=Guillon%2C+Bruno&rft.au=Kante%2C+Mamadou+Moustapha&rft.au=Kim%2C+Eun+Jung&rft.date=2025-06-23&rft.pub=IEEE&rft.spage=678&rft.epage=690&rft_id=info:doi/10.1109%2FLICS65433.2025.00057&rft.externalDocID=11186334