Harmonic mappings related to starlike function of complex order [alpha]
Let [S.sub.H] be the class of harmonic mappings defined by [S.sub.H] = f = h(z) + [bar.g(z)]|h(z) = z + [[infinity].summation over (n=2)] [a.sub.n][z.sup.n], g(z) = [[infinity].summation over (n=1)][b.sub.n][z.sup.n] The purpose of this talk is to present some results about harmonic mappings which w...
Uložené v:
| Vydané v: | TWMS journal of applied and engineering mathematics Ročník 4; číslo 1; s. 7 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Istanbul
Turkic World Mathematical Society
01.01.2014
Elman Hasanoglu |
| Predmet: | |
| ISSN: | 2146-1147, 2146-1147 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Let [S.sub.H] be the class of harmonic mappings defined by [S.sub.H] = f = h(z) + [bar.g(z)]|h(z) = z + [[infinity].summation over (n=2)] [a.sub.n][z.sup.n], g(z) = [[infinity].summation over (n=1)][b.sub.n][z.sup.n] The purpose of this talk is to present some results about harmonic mappings which was introduced by R. M. Robinson [8]. Keywords: Harmonic Mappings, Subordination principle, Distortion theorem, Growth theorem, Coefficient inequality. AMS Subject Classification: Primary 30C45, Secondary 30C55. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2146-1147 2146-1147 |