Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words

We consider decision problems for relations over finite and infinite words defined by finite automata. We prove that the equivalence problem for binary deterministic rational relations over infinite words is undecidable in contrast to the case of finite words, where the problem is decidable. Further...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete Mathematics and Theoretical Computer Science Ročník 21; číslo 3; s. 1 - 32
Hlavní autori: Loding, Christof, Spinrath, Christopher
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Nancy DMTCS 01.07.2019
Predmet:
ISSN:1462-7264, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider decision problems for relations over finite and infinite words defined by finite automata. We prove that the equivalence problem for binary deterministic rational relations over infinite words is undecidable in contrast to the case of finite words, where the problem is decidable. Furthermore, we show that it is decidable in doubly exponential time for an automatic relation over infinite words whether it is a recognizable relation. We also revisit this problem in the context of finite words and improve the complexity of the decision procedure to single exponential time. The procedure is based on a polynomial time regularity test for deterministic visibly pushdown automata, which is a result of independent interest. Keywords: rational relations, automatic relations, omega-automata, finite transducers, visibly pushdown automata
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1462-7264
1365-8050