Sobolev Inequalities and the ∂¯-Neumann Operator

We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the ∂ ¯ -Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in L 2 -spaces. Finally we remark that the ∂ ¯...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of geometric analysis Ročník 26; číslo 1; s. 287 - 293
Hlavný autor: Haslinger, Friedrich
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.01.2016
Predmet:
ISSN:1050-6926, 1559-002X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the ∂ ¯ -Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in L 2 -spaces. Finally we remark that the ∂ ¯ -Neumann operator can be continuously extended provided a subelliptic estimate holds.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-014-9549-3