Sobolev Inequalities and the ∂¯-Neumann Operator
We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the ∂ ¯ -Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in L 2 -spaces. Finally we remark that the ∂ ¯...
Uložené v:
| Vydané v: | The Journal of geometric analysis Ročník 26; číslo 1; s. 287 - 293 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.01.2016
|
| Predmet: | |
| ISSN: | 1050-6926, 1559-002X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the
∂
¯
-Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in
L
2
-spaces. Finally we remark that the
∂
¯
-Neumann operator can be continuously extended provided a subelliptic estimate holds. |
|---|---|
| ISSN: | 1050-6926 1559-002X |
| DOI: | 10.1007/s12220-014-9549-3 |