On sufficiency and duality for nonsmooth multiobjective programming problems involving generalized V – r -invex functions

In this paper, a class of nonsmooth multiobjective programming problems with inequality constraints is considered. We introduce the concepts of V – r -pseudo-invex, strictly V – r -pseudo-invex and V – r -quasi-invex functions, in which the involved functions are locally Lipschitz. Based upon these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis Jg. 74; H. 17; S. 5920 - 5928
Hauptverfasser: Ahmad, I., Gupta, S.K., Jayswal, Anurag
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Ltd 01.12.2011
Elsevier
Schlagworte:
ISSN:0362-546X, 1873-5215
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a class of nonsmooth multiobjective programming problems with inequality constraints is considered. We introduce the concepts of V – r -pseudo-invex, strictly V – r -pseudo-invex and V – r -quasi-invex functions, in which the involved functions are locally Lipschitz. Based upon these generalized V – r -invex functions, sufficient optimality conditions for a feasible point to be an efficient or a weakly efficient solution are derived. Appropriate duality theorems are proved for a Mond–Weir-type dual program of a nonsmooth multiobjective programming under the aforesaid functions.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2011.05.058