On sufficiency and duality for nonsmooth multiobjective programming problems involving generalized V – r -invex functions
In this paper, a class of nonsmooth multiobjective programming problems with inequality constraints is considered. We introduce the concepts of V – r -pseudo-invex, strictly V – r -pseudo-invex and V – r -quasi-invex functions, in which the involved functions are locally Lipschitz. Based upon these...
Gespeichert in:
| Veröffentlicht in: | Nonlinear analysis Jg. 74; H. 17; S. 5920 - 5928 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier Ltd
01.12.2011
Elsevier |
| Schlagworte: | |
| ISSN: | 0362-546X, 1873-5215 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, a class of nonsmooth multiobjective programming problems with inequality constraints is considered. We introduce the concepts of
V
–
r
-pseudo-invex, strictly
V
–
r
-pseudo-invex and
V
–
r
-quasi-invex functions, in which the involved functions are locally Lipschitz. Based upon these generalized
V
–
r
-invex functions, sufficient optimality conditions for a feasible point to be an efficient or a weakly efficient solution are derived. Appropriate duality theorems are proved for a Mond–Weir-type dual program of a nonsmooth multiobjective programming under the aforesaid functions. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0362-546X 1873-5215 |
| DOI: | 10.1016/j.na.2011.05.058 |