RIP analysis for the weighted ℓr-ℓ1 minimization method
•The restricted isometry property (RIP) and high-order RIP analysis results for the weighted ℓr−ℓ1 minimization method are presented.•Through a novel decomposition of the objective function into a difference of two convex functions, the weighted ℓr−ℓ1 minimization problem is solved via the differenc...
Uloženo v:
| Vydáno v: | Signal processing Ročník 202 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2023
|
| Témata: | |
| ISSN: | 0165-1684 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •The restricted isometry property (RIP) and high-order RIP analysis results for the weighted ℓr−ℓ1 minimization method are presented.•Through a novel decomposition of the objective function into a difference of two convex functions, the weighted ℓr−ℓ1 minimization problem is solved via the difference of convex functions algorithms (DCA) directly.•Numerical experiments show that the DCA based weighted ℓr−ℓ1 minimization method gives satisfactory results in sparse recovery no matter whether the measurement matrix is coherent or not.•For highly coherent measurements, the proposed method even outperforms the state-of-art ℓ1−ℓ2 minimization method.
The weighted ℓr−ℓ1 minimization method with 0<r≤1 largely generalizes the classical ℓr minimization method and achieves very good performance in compressive sensing. However, its restricted isometry property (RIP) and high-order RIP analysis results remain unknown. In this paper, we fill in this gap by adopting newly developed analysis tools. Moreover, through a novel decomposition of the objective function into a difference of two convex functions, we propose to solve the weighted ℓr−ℓ1 minimization problem via the difference of convex functions algorithms (DCA) directly. Numerical experiments show that our DCA based weighted ℓr−ℓ1 minimization method gives satisfactory results in sparse recovery no matter whether the measurement matrix is coherent or not. For highly coherent measurements, our proposed method even outperforms the state-of-art ℓ1−ℓ2 minimization method. |
|---|---|
| AbstractList | •The restricted isometry property (RIP) and high-order RIP analysis results for the weighted ℓr−ℓ1 minimization method are presented.•Through a novel decomposition of the objective function into a difference of two convex functions, the weighted ℓr−ℓ1 minimization problem is solved via the difference of convex functions algorithms (DCA) directly.•Numerical experiments show that the DCA based weighted ℓr−ℓ1 minimization method gives satisfactory results in sparse recovery no matter whether the measurement matrix is coherent or not.•For highly coherent measurements, the proposed method even outperforms the state-of-art ℓ1−ℓ2 minimization method.
The weighted ℓr−ℓ1 minimization method with 0<r≤1 largely generalizes the classical ℓr minimization method and achieves very good performance in compressive sensing. However, its restricted isometry property (RIP) and high-order RIP analysis results remain unknown. In this paper, we fill in this gap by adopting newly developed analysis tools. Moreover, through a novel decomposition of the objective function into a difference of two convex functions, we propose to solve the weighted ℓr−ℓ1 minimization problem via the difference of convex functions algorithms (DCA) directly. Numerical experiments show that our DCA based weighted ℓr−ℓ1 minimization method gives satisfactory results in sparse recovery no matter whether the measurement matrix is coherent or not. For highly coherent measurements, our proposed method even outperforms the state-of-art ℓ1−ℓ2 minimization method. |
| ArticleNumber | 108754 |
| Author | Zhou, Zhiyong |
| Author_xml | – sequence: 1 givenname: Zhiyong orcidid: 0000-0001-9861-6134 surname: Zhou fullname: Zhou, Zhiyong email: zhiyongzhou@zucc.edu.cn organization: Department of Statistics and Data Science, Zhejiang University City College, Hangzhou 310015, China |
| BookMark | eNotj9FKwzAYhXMxwW36Bl7kBVrzp01MEQQZ6gYDRfQ6_Gv_rilrKk1Q9No38A19EjvqzTlwDpzDt2Az33ti7AJECgL0ZZsGt38b-lQKKcfIXKl8xuZjpRLQJj9lixBaIQRkWszZ9fPmiaPHw2dwgdf9wGND_IPcvolU8d_vnyEZBXjnvOvcF0bXe95RbPrqjJ3UeAh0_u9L9np_97JaJ9vHh83qdpuQBBGTgoSGWmmUlCFCQYDGoKxNhUruUOsdFsqUWkkDQpU5oSxkTkUNxsixypbsZtql8eTd0WBD6ciXVLmBymir3lkQ9ohvWzvh2yO-nfCzP5vkVcQ |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DOI | 10.1016/j.sigpro.2022.108754 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | S0165168422002936 |
| GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LQ21A010003, and a research grant from Institute of Digital Finance, Zhejiang University City College. funderid: https://doi.org/10.13039/501100004731 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- |
| ID | FETCH-LOGICAL-e210t-9e061f56a2e3aa19e1a88a2f8da52ba66ba958c6528105c4ea2924e9f1882a953 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862589400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1684 |
| IngestDate | Sun Apr 06 06:54:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Compressive sensing Restricted isometry property Difference of convex functions algorithms Nonconvex sparse recovery Weighted ℓr−ℓ1 minimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-e210t-9e061f56a2e3aa19e1a88a2f8da52ba66ba958c6528105c4ea2924e9f1882a953 |
| ORCID | 0000-0001-9861-6134 |
| ParticipantIDs | elsevier_sciencedirect_doi_10_1016_j_sigpro_2022_108754 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Signal processing |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wen, Weng, Tong, Ren, Zhou (bib0019) 2019; 68 J. Huang, F. Zhang, X. Liu, J. Wang, Stable Recovery of Sparse Signals with Non-convex Weighted r-Norm Minus 1-Norm, 2022. Gasso, Rakotomamonjy, Canu (bib0049) 2009; 57 Li, Lin (bib0012) 2014; 8 (2021). Chen, Wan (bib0040) 2019; 363 Lin, Li (bib0013) 2016; 62 Lyu, Lin, She, Zhang (bib0052) 2013; 119 Zhou, Yu (bib0030) 2019; 155 Tao, An (bib0036) 1998; 8 Boyd, Parikh, Chu, Peleato, Eckstein (bib0005) 2011; 3 Fan, Li (bib0009) 2001; 96 Candes, Tao (bib0048) 2007; 35 M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, 2014. Zhang, Zhang (bib0027) 2021 Wen, Chu, Liu, Qiu (bib0022) 2018; 6 Chartrand, Yin (bib0033) 2008 Lai, Xu, Yin (bib0034) 2013; 51 Foucart, Rauhut (bib0002) 2013; vol. 1 Chartrand (bib0010) 2007; 14 Wen, Li, Zhu (bib0043) 2015; 38 Blumensath, Davies (bib0008) 2009; 27 Xu, Chang, Xu, Zhang (bib0015) 2012; 23 Chartrand, Staneva (bib0029) 2008; 24 Cai, Zhang (bib0039) 2013; 60 Zhang, Li (bib0046) 2017; 64 Ge, Chen, Ng (bib0032) 2021; 14 Cai, Zhang (bib0038) 2013; 35 Yang, Shen, Ma, Gu, So (bib0045) 2018; 66 Wu, Chen (bib0044) 2013; 59 Z. Zhou, Sparse recovery based on the generalized error function Tao, An (bib0035) 1997; 22 Zhou, Yu (bib0025) 2019; 5 Candes, Tao (bib0037) 2005; 51 Wan (bib0047) 2020; 68 Sun (bib0042) 2012; 32 Yan, Shin, Xiu (bib0020) 2017; 39 Zhou (bib0024) 2022; 29 Guan, Gray (bib0050) 2013; 67 Ma, Lou, Huang (bib0017) 2017; 10 Tibshirani (bib0004) 1996; 58 Cai (bib0026) 2021; 19 Zhang, Li (bib0031) 2019; 47 Needell, Tropp (bib0007) 2009; 26 Song, Xia (bib0041) 2014; 21 Chen, Donoho, Saunders (bib0003) 1998; 20 Zhang, Xin (bib0016) 2018; 169 Wang, Wang (bib0018) 2019; 55 Shen, Li (bib0014) 2012; 37 Tropp, Gilbert (bib0006) 2007; 53 Foucart, Lai (bib0011) 2009; 26 Yin, Lou, He, Xin (bib0021) 2015; 37 Le Thi, Dinh, Le, Vo (bib0051) 2015; 244 Eldar, Kutyniok (bib0001) 2012 |
| References_xml | – volume: 8 start-page: 476 year: 1998 end-page: 505 ident: bib0036 article-title: A DC optimization algorithm for solving the trust-region subproblem publication-title: SIAM J. Optim. – volume: 21 start-page: 1154 year: 2014 end-page: 1158 ident: bib0041 article-title: Sparse signal recovery by publication-title: IEEE Signal Process. Lett. – volume: 119 start-page: 413 year: 2013 end-page: 424 ident: bib0052 article-title: A comparison of typical publication-title: Neurocomputing – volume: 59 start-page: 6142 year: 2013 end-page: 6147 ident: bib0044 article-title: The improved bounds of restricted isometry constant for recovery via publication-title: IEEE Trans. Inf. Theory – volume: 62 start-page: 4733 year: 2016 end-page: 4747 ident: bib0013 article-title: Restricted publication-title: IEEE Trans. Inf. Theory – reference: Z. Zhou, Sparse recovery based on the generalized error function, – volume: vol. 1 year: 2013 ident: bib0002 article-title: A Mathematical Introduction to Compressive Sensing – start-page: 3869 year: 2008 end-page: 3872 ident: bib0033 article-title: Iteratively reweighted algorithms for compressive sensing publication-title: Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE international Conference on – volume: 66 start-page: 5014 year: 2018 end-page: 5028 ident: bib0045 article-title: Sparse recovery conditions and performance bounds for publication-title: IEEE Trans. Signal Process. – volume: 6 start-page: 69883 year: 2018 end-page: 69906 ident: bib0022 article-title: A survey on nonconvex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning publication-title: IEEE Access – volume: 96 start-page: 1348 year: 2001 end-page: 1360 ident: bib0009 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. – volume: 64 start-page: 1699 year: 2017 end-page: 1705 ident: bib0046 article-title: A proof of conjecture on restricted isometry property constants publication-title: IEEE Trans. Inf. Theory – volume: 47 start-page: 566 year: 2019 end-page: 584 ident: bib0031 article-title: Optimal RIP bounds for sparse signals recovery via publication-title: Appl. Comput. Harmon. Anal. – volume: 26 start-page: 301 year: 2009 end-page: 321 ident: bib0007 article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples publication-title: Appl. Comput. Harmon. Anal. – volume: 20 start-page: 33 year: 1998 end-page: 61 ident: bib0003 article-title: Atomic decomposition by basis pursuit publication-title: SIAM J. Sci. Comput. – start-page: 2150057 year: 2021 ident: bib0027 article-title: Recovery analysis for block publication-title: Int. J. Wavelets Multiresolut Inf. Process. – volume: 51 start-page: 4203 year: 2005 end-page: 4215 ident: bib0037 article-title: Decoding by linear programming publication-title: IEEE Trans. Inf. Theory – volume: 67 start-page: 136 year: 2013 end-page: 148 ident: bib0050 article-title: Sparse high-dimensional fractional-norm support vector machine via DC programming publication-title: Comput. Stat. Data Anal. – volume: 14 start-page: 530 year: 2021 end-page: 557 ident: bib0032 article-title: New restricted isometry property analysis fo publication-title: SIAM J. Imaging Sci. – volume: 32 start-page: 329 year: 2012 end-page: 341 ident: bib0042 article-title: Recovery of sparsest signals via publication-title: Appl. Comput. Harmon. Anal. – volume: 68 start-page: 5379 year: 2020 end-page: 5394 ident: bib0047 article-title: Uniform RIP conditions for recovery of sparse signals by publication-title: IEEE Trans. Signal Process. – volume: 35 start-page: 2313 year: 2007 end-page: 2351 ident: bib0048 article-title: The Dantzig selector: statistical estimation when publication-title: Ann. Stat. – volume: 244 start-page: 26 year: 2015 end-page: 46 ident: bib0051 article-title: DC approximation approaches for sparse optimization publication-title: Eur. J. Oper. Res. – volume: 37 start-page: A536 year: 2015 end-page: A563 ident: bib0021 article-title: Minimization of publication-title: SIAM J. Sci. Comput. – volume: 22 start-page: 289 year: 1997 end-page: 355 ident: bib0035 article-title: Convex analysis approach to dc programming: theory, algorithms and applications publication-title: Acta Math. Vietnam. – reference: (2021). – reference: J. Huang, F. Zhang, X. Liu, J. Wang, Stable Recovery of Sparse Signals with Non-convex Weighted r-Norm Minus 1-Norm, 2022. – volume: 57 start-page: 4686 year: 2009 end-page: 4698 ident: bib0049 article-title: Recovering sparse signals with a certain family of nonconvex penalties and dc programming publication-title: IEEE Trans. Signal Process. – volume: 55 start-page: 1199 year: 2019 end-page: 1201 ident: bib0018 article-title: Improved sufficient condition of publication-title: Electron. Lett. – reference: M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, 2014. – year: 2012 ident: bib0001 article-title: Compressed Sensing: Theory and Applications – volume: 3 start-page: 1 year: 2011 end-page: 122 ident: bib0005 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends® Mach. Learn. – volume: 38 start-page: 161 year: 2015 end-page: 176 ident: bib0043 article-title: Stable recovery of sparse signals via publication-title: Appl. Comput. Harmon. Anal. – volume: 35 start-page: 74 year: 2013 end-page: 93 ident: bib0038 article-title: Sharp RIP bound for sparse signal and low-rank matrix recovery publication-title: Appl. Comput. Harmon. Anal. – volume: 26 start-page: 395 year: 2009 end-page: 407 ident: bib0011 article-title: Sparsest solutions of underdetermined linear systems via publication-title: Appl. Comput. Harmon. Anal. – volume: 19 start-page: 343 year: 2021 end-page: 361 ident: bib0026 article-title: Weighted publication-title: Anal. Appl. – volume: 23 start-page: 1013 year: 2012 end-page: 1027 ident: bib0015 article-title: regularization: a thresholding representation theory and a fast solver publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 363 start-page: 306 year: 2019 end-page: 312 ident: bib0040 article-title: General RIP bounds of publication-title: Neurocomputing – volume: 51 start-page: 927 year: 2013 end-page: 957 ident: bib0034 article-title: Improved iteratively reweighted least squares for unconstrained smoothed publication-title: SIAM J. Numer. Anal. – volume: 169 start-page: 307 year: 2018 end-page: 336 ident: bib0016 article-title: Minimization of transformed publication-title: Math. Program. – volume: 8 start-page: 761 year: 2014 end-page: 777 ident: bib0012 article-title: Compressed sensing with coherent tight frames via publication-title: Inverse Probl. Imaging – volume: 53 start-page: 4655 year: 2007 end-page: 4666 ident: bib0006 article-title: Signal recovery from random measurements via orthogonal matching pursuit publication-title: IEEE Trans. Inf. Theory – volume: 155 start-page: 247 year: 2019 end-page: 258 ident: bib0030 article-title: Sparse recovery based on publication-title: Signal Process. – volume: 39 start-page: A229 year: 2017 end-page: A254 ident: bib0020 article-title: Sparse approximation using publication-title: SIAM J. Sci. Comput. – volume: 5 start-page: 14 year: 2019 ident: bib0025 article-title: A new nonconvex sparse recovery method for compressive sensing publication-title: Front. Appl. Math. Stat. – volume: 27 start-page: 265 year: 2009 end-page: 274 ident: bib0008 article-title: Iterative hard thresholding for compressed sensing publication-title: Appl. Comput. Harmon. Anal. – volume: 14 start-page: 707 year: 2007 end-page: 710 ident: bib0010 article-title: Exact reconstruction of sparse signals via nonconvex minimization publication-title: IEEE Signal Process. Lett. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0004 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. Ser. B. – volume: 29 start-page: 479 year: 2022 end-page: 483 ident: bib0024 article-title: A unified framework for constructing nonconvex regularizations publication-title: IEEE Signal Process. Lett. – volume: 68 start-page: 6847 year: 2019 end-page: 6854 ident: bib0019 article-title: Sparse signal recovery with minimization of 1-norm minus 2-norm publication-title: IEEE Trans. Veh. Technol. – volume: 24 start-page: 035020 year: 2008 ident: bib0029 article-title: Restricted isometry properties and nonconvex compressive sensing publication-title: Inverse Probl. – volume: 37 start-page: 441 year: 2012 end-page: 452 ident: bib0014 article-title: Restricted publication-title: Adv. Comput. Math. – volume: 60 start-page: 122 year: 2013 end-page: 132 ident: bib0039 article-title: Sparse representation of a polytope and recovery of sparse signals and low-rank matrices publication-title: IEEE Trans. Inf. Theory – volume: 10 start-page: 1346 year: 2017 end-page: 1380 ident: bib0017 article-title: Truncated publication-title: SIAM J. Imaging Sci. |
| SSID | ssj0001360 |
| Score | 2.4452105 |
| Snippet | •The restricted isometry property (RIP) and high-order RIP analysis results for the weighted ℓr−ℓ1 minimization method are presented.•Through a novel... |
| SourceID | elsevier |
| SourceType | Publisher |
| SubjectTerms | Compressive sensing Difference of convex functions algorithms Nonconvex sparse recovery Restricted isometry property Weighted [formula omitted] minimization |
| Title | RIP analysis for the weighted ℓr-ℓ1 minimization method |
| URI | https://dx.doi.org/10.1016/j.sigpro.2022.108754 |
| Volume | 202 |
| WOSCitedRecordID | wos000862589400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0165-1684 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001360 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9swGLZG4QAHxICJjzH5ME6VUWPHji1OFeoE04TQKKi3yE0dKBIpasvXnX-wf7hfwuuvEtHLNmkXy3Jkx_GT2M_75v1A6Gs5AFlHc0OKtKQkTaQm_UHBiZADbYqMldxZ-V7-yE5PZa-nzkJOz4lLJ5BVlXx6Unf_FWpoA7Ct6-xfwD0bFBqgDqBDCbBD-UfA_zw5a-oYaiQaET46DSiQS2fckO4rNiazatK0AUZug0dmSCpdZ63nwytLWu-8U0E87Jy6eXTvfm9cD59HoTmoECh7p0KY923xqkbBSSJ8Are4V1LnHj2_73oVwM3BZHgFcwGxm1JrvZj5ANHvIlqf26HtyNRaiCgmFtAizbiSDbTYPun0vs-O0oQ5N-_ZVKLvozPQm79XjVDUSEJ3Da0Gdo_bHpWP6IOp1tFKLebjBjoEfHDEBwM-GPDBER_8--XXmECR4Dom2GOyiS6-dbpHxyRksCAGROkpUQboUsmFpoZpnSiTaCk1LeFD4LSvhehrxWUhOJXAc4vUaArysFFlAoIPXGKfUKMaVWYL4YIK6F1KJg1NmU771LTK1gAYXsumLGhtoyw-ex7IkydFOWCUR1u-m9yvWm5XLfertvPPPXfR8tvr9Bk1puN7s4eWiofpcDL-EsB8Ba3WPys |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RIP+analysis+for+the+weighted+%E2%84%93r-%E2%84%931+minimization+method&rft.jtitle=Signal+processing&rft.au=Zhou%2C+Zhiyong&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.volume=202&rft_id=info:doi/10.1016%2Fj.sigpro.2022.108754&rft.externalDocID=S0165168422002936 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |