Fixed-parameter algorithms for vertex cover P3
Let Pℓ denote a path in a graph G=(V,E) with ℓ vertices. A vertex coverPℓsetC in G is a vertex subset such that every Pℓ in G has at least a vertex in C. The Vertex CoverPℓ problem is to find a vertex cover Pℓ set of minimum cardinality in a given graph. This problem is NP-hard for any integer ℓ⩾2....
Gespeichert in:
| Veröffentlicht in: | Discrete optimization Jg. 19; S. 12 - 22 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.02.2016
|
| Schlagworte: | |
| ISSN: | 1572-5286, 1873-636X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Let Pℓ denote a path in a graph G=(V,E) with ℓ vertices. A vertex coverPℓsetC in G is a vertex subset such that every Pℓ in G has at least a vertex in C. The Vertex CoverPℓ problem is to find a vertex cover Pℓ set of minimum cardinality in a given graph. This problem is NP-hard for any integer ℓ⩾2. The parameterized version of Vertex CoverPℓ problem called k-Vertex CoverPℓ asks whether there exists a vertex cover Pℓ set of size at most k in the input graph. In this paper, we give two fixed parameter algorithms to solve the k-Vertex CoverP3 problem. The first algorithm runs in time O∗(1.7964k) in polynomial space and the second algorithm runs in time O∗(1.7485k) in exponential space. Both algorithms are faster than previous known fixed-parameter algorithms. |
|---|---|
| ISSN: | 1572-5286 1873-636X |
| DOI: | 10.1016/j.disopt.2015.11.003 |