A robust kernelized intuitionistic fuzzy c-means clustering algorithm in segmentation of noisy medical images
This paper presents an automatic effective intuitionistic fuzzy c-means which is an extension of standard intuitionisitc fuzzy c-means (IFCM). We present a model called RBF Kernel based intuitionistic fuzzy c-means (KIFCM) where IFCM is extended by adopting a kernel induced metric in the data space...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition letters Jg. 34; H. 2; S. 163 - 175 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
15.01.2013
|
| Schlagworte: | |
| ISSN: | 0167-8655, 1872-7344 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper presents an automatic effective intuitionistic fuzzy c-means which is an extension of standard intuitionisitc fuzzy c-means (IFCM). We present a model called RBF Kernel based intuitionistic fuzzy c-means (KIFCM) where IFCM is extended by adopting a kernel induced metric in the data space to replace the original Euclidean norm metric. By using kernel function it becomes possible to cluster data, which is linearly non-separable in the original space, into homogeneous groups by transforming the data into high dimensional space. Proposed clustering method is applied on synthetic data-sets referred from various papers, real data-sets from Public Library UCI, Simulated and Real MR brain images. Experimental results are given to show the effectiveness of proposed method in contrast to conventional fuzzy c-means, possibilistic c-means, possibilistic fuzzy c-means, noise clustering, kernelized fuzzy c-means, type-2 fuzzy c-means, kernelized type-2 fuzzy c-means, and intuitionistic fuzzy c-means. |
|---|---|
| ISSN: | 0167-8655 1872-7344 |
| DOI: | 10.1016/j.patrec.2012.09.015 |