A non-commutative F5 algorithm with an application to the computation of Loewy layers

We provide a non-commutative version of the F5 algorithm, namely for right-modules over path algebra quotients. It terminates, if the path algebra quotient is a basic algebra. We show that the signatures used in the F5 algorithm allow to read off a basis for each Loewy layer, provided that a negativ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of symbolic computation Ročník 65; s. 111 - 129
Hlavní autor: King, Simon A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2014
Témata:
ISSN:0747-7171, 1095-855X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We provide a non-commutative version of the F5 algorithm, namely for right-modules over path algebra quotients. It terminates, if the path algebra quotient is a basic algebra. We show that the signatures used in the F5 algorithm allow to read off a basis for each Loewy layer, provided that a negative degree monomial ordering is used. As a byproduct, Gröbner bases in this setting can be computed more efficiently with the F5 algorithm than with Buchberger's algorithm.
ISSN:0747-7171
1095-855X
DOI:10.1016/j.jsc.2014.01.006