A non-commutative F5 algorithm with an application to the computation of Loewy layers
We provide a non-commutative version of the F5 algorithm, namely for right-modules over path algebra quotients. It terminates, if the path algebra quotient is a basic algebra. We show that the signatures used in the F5 algorithm allow to read off a basis for each Loewy layer, provided that a negativ...
Uloženo v:
| Vydáno v: | Journal of symbolic computation Ročník 65; s. 111 - 129 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2014
|
| Témata: | |
| ISSN: | 0747-7171, 1095-855X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We provide a non-commutative version of the F5 algorithm, namely for right-modules over path algebra quotients. It terminates, if the path algebra quotient is a basic algebra. We show that the signatures used in the F5 algorithm allow to read off a basis for each Loewy layer, provided that a negative degree monomial ordering is used. As a byproduct, Gröbner bases in this setting can be computed more efficiently with the F5 algorithm than with Buchberger's algorithm. |
|---|---|
| ISSN: | 0747-7171 1095-855X |
| DOI: | 10.1016/j.jsc.2014.01.006 |