Structure-based protein function prediction using graph convolutional networks

The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, we introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by leveraging sequence features ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 12; H. 1; S. 3168 - 14
Hauptverfasser: Gligorijević, Vladimir, Renfrew, P. Douglas, Kosciolek, Tomasz, Leman, Julia Koehler, Berenberg, Daniel, Vatanen, Tommi, Chandler, Chris, Taylor, Bryn C., Fisk, Ian M., Vlamakis, Hera, Xavier, Ramnik J., Knight, Rob, Cho, Kyunghyun, Bonneau, Richard
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 26.05.2021
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, we introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by leveraging sequence features extracted from a protein language model and protein structures. It outperforms current leading methods and sequence-based Convolutional Neural Networks and scales to the size of current sequence repositories. Augmenting the training set of experimental structures with homology models allows us to significantly expand the number of predictable functions. DeepFRI has significant de-noising capability, with only a minor drop in performance when experimental structures are replaced by protein models. Class activation mapping allows function predictions at an unprecedented resolution, allowing site-specific annotations at the residue-level in an automated manner. We show the utility and high performance of our method by annotating structures from the PDB and SWISS-MODEL, making several new confident function predictions. DeepFRI is available as a webserver at https://beta.deepfri.flatironinstitute.org/ . The rapid increase in the number of proteins in sequence databases and the diversity of their functions challenge computational approaches for automated function prediction. Here, the authors introduce DeepFRI, a Graph Convolutional Network for predicting protein functions by leveraging sequence features extracted from a protein language model and protein structures.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-23303-9