Asymptotic expansion formulas for the maximum of solutions to diffusive logistic equations

We consider the nonlinear eigenvalue problems $$displaylines{ -u''(t) + u(t)^p = lambda u(t),cr u(t) > 0, quad t in I := (0, 1), quad u(0) = u(1) = 0, }$$ where $p > 1$ is a constant and $lambda > 0$ is a parameter. This equation is well known as the original logistic equation of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronic journal of differential equations Ročník 2008; číslo 161; s. 1 - 7
Hlavní autor: Tetsutaro Shibata
Médium: Journal Article
Jazyk:angličtina
Vydáno: Texas State University 09.12.2008
Témata:
ISSN:1072-6691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the nonlinear eigenvalue problems $$displaylines{ -u''(t) + u(t)^p = lambda u(t),cr u(t) > 0, quad t in I := (0, 1), quad u(0) = u(1) = 0, }$$ where $p > 1$ is a constant and $lambda > 0$ is a parameter. This equation is well known as the original logistic equation of population dynamics when $p=2$. We establish the precise asymptotic formula for $L^infty$-norm of the solution $u_lambda$ as $lambda o infty$ when $p=2$ and $p=5$.
ISSN:1072-6691