Asymptotic expansion formulas for the maximum of solutions to diffusive logistic equations
We consider the nonlinear eigenvalue problems $$displaylines{ -u''(t) + u(t)^p = lambda u(t),cr u(t) > 0, quad t in I := (0, 1), quad u(0) = u(1) = 0, }$$ where $p > 1$ is a constant and $lambda > 0$ is a parameter. This equation is well known as the original logistic equation of...
Uloženo v:
| Vydáno v: | Electronic journal of differential equations Ročník 2008; číslo 161; s. 1 - 7 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Texas State University
09.12.2008
|
| Témata: | |
| ISSN: | 1072-6691 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the nonlinear eigenvalue problems $$displaylines{ -u''(t) + u(t)^p = lambda u(t),cr u(t) > 0, quad t in I := (0, 1), quad u(0) = u(1) = 0, }$$ where $p > 1$ is a constant and $lambda > 0$ is a parameter. This equation is well known as the original logistic equation of population dynamics when $p=2$. We establish the precise asymptotic formula for $L^infty$-norm of the solution $u_lambda$ as $lambda o infty$ when $p=2$ and $p=5$. |
|---|---|
| ISSN: | 1072-6691 |