Towards Reliable Rule Mining about Code Smells: The McPython Approach

CODE smell is a risky pattern in code that can lead, in the future, to problems with code maintenance. One of the approaches to identifying smells in the code is metric-based smell detection. A classic example is the God Class smell which can be detected by using three metrics (see, e.g., [1]-[3]):...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS) Ročník 35; s. 65 - 66
Hlavní autoři: Ziobrowski, Maciej, Ochodek, Miroslaw, Nawrocki, Jerzy, Walter, Bartosz
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: Polish Information Processing Society 2023
Témata:
ISSN:2300-5963
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:CODE smell is a risky pattern in code that can lead, in the future, to problems with code maintenance. One of the approaches to identifying smells in the code is metric-based smell detection. A classic example is the God Class smell which can be detected by using three metrics (see, e.g., [1]-[3]): * Weighted Method Count (WMC - sum of McCabe's complexity of all methods in the analysed class), * Tight Class Cohesion (TCC - relative number of directly connected methods within the analysed class), and * Access to Foreign Data (ATFD - number of classes containing attributes referenced by the analysed class directly or via get/set methods).
ISSN:2300-5963
DOI:10.15439/2023F2071