Machine Learning Model for Battle of Water Demand Forecasting

This article investigates the optimization of urban water distribution in the context of population growth and climate change. It highlights the use of the ExtraTreesRegressor algorithm to forecast water demand with greater accuracy. By analyzing a dataset from North-East Italy, the study demonstrat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering proceedings Ročník 69; číslo 1; s. 37
Hlavní autori: Mario Pagano, Giovanni Francesco Santonastaso, Armando Di Nardo, Salvatore Cuomo, Vincenzo Schiano Di Cola
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: MDPI AG 01.09.2024
Predmet:
ISSN:2673-4591
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article investigates the optimization of urban water distribution in the context of population growth and climate change. It highlights the use of the ExtraTreesRegressor algorithm to forecast water demand with greater accuracy. By analyzing a dataset from North-East Italy, the study demonstrates the importance of temporal dynamics over meteorological factors in predicting water consumption patterns. The findings present a novel approach to improving water management strategies, demonstrating machine learning’s potential in addressing critical urban infra-structure challenges.
ISSN:2673-4591
DOI:10.3390/engproc2024069037