Comparative Study of Random Forest and Gradient Boosting Algorithms to Predict Airfoil Self-Noise

Airfoil noise due to pressure fluctuations impacts the efficiency of aircraft and has created significant concern in the aerospace industry. Hence, there is a need to predict airfoil noise. This paper uses the airfoil dataset published by NASA (NACA 0012 airfoils) to predict the scaled sound pressur...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering proceedings Ročník 59; číslo 1; s. 24
Hlavní autori: Shantaram B. Nadkarni, G. S. Vijay, Raghavendra C. Kamath
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: MDPI AG 01.12.2023
Predmet:
ISSN:2673-4591
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Airfoil noise due to pressure fluctuations impacts the efficiency of aircraft and has created significant concern in the aerospace industry. Hence, there is a need to predict airfoil noise. This paper uses the airfoil dataset published by NASA (NACA 0012 airfoils) to predict the scaled sound pressure using five different input features. Diverse Random Forest and Gradient Boost Models are tested with five-fold cross-validation. Their performance is assessed based on mean-squared error, coefficient of determination, training time, and standard deviation. The results show that the Extremely Randomized Trees algorithm exhibits the most superior performance with the highest Coefficient of Determination.
AbstractList Airfoil noise due to pressure fluctuations impacts the efficiency of aircraft and has created significant concern in the aerospace industry. Hence, there is a need to predict airfoil noise. This paper uses the airfoil dataset published by NASA (NACA 0012 airfoils) to predict the scaled sound pressure using five different input features. Diverse Random Forest and Gradient Boost Models are tested with five-fold cross-validation. Their performance is assessed based on mean-squared error, coefficient of determination, training time, and standard deviation. The results show that the Extremely Randomized Trees algorithm exhibits the most superior performance with the highest Coefficient of Determination.
Author Raghavendra C. Kamath
G. S. Vijay
Shantaram B. Nadkarni
Author_xml – sequence: 1
  fullname: Shantaram B. Nadkarni
  organization: Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
– sequence: 2
  fullname: G. S. Vijay
  organization: Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
– sequence: 3
  fullname: Raghavendra C. Kamath
  organization: Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
BookMark eNotkM1Kw0AUhQdRsNY-gLt5gej8J7OsxdZCUbG6DjeZmTglzS2TUfDtDerqcM7i4-NckfMBB0_IDWe3Ulp254fulLAVTEimLRPqjMyEKWWhtOWXZDGOB8aY0FwoKWcEVng8QYIcvzzd50_3TTHQVxgcHukakx8znQrdJHDRD5neI445Dh1d9h2mmD-OI81IX5J3sc10GVPA2NO970PxhHH01-QiQD_6xX_Oyfv64W31WOyeN9vVclc4XlpVOAXCeNP4apLzhstKt01oWu3YZM50KbWVldMSbFDK6cax0jhrPICqAjg5J9s_rkM41KcUj5C-a4RY_w6YuhpSjm3vaxdcFYTkummNkoZbO72hQSouRFlWSv4AdwdlGQ
ContentType Journal Article
DBID DOA
DOI 10.3390/engproc2023059024
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2673-4591
ExternalDocumentID oai_doaj_org_article_dfd8f2315bc64361991245a341227784
GroupedDBID AADQD
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
GROUPED_DOAJ
OK1
ID FETCH-LOGICAL-d1794-d4a26e6be8025e61385cbfbc5d045905735938d53a9f44d5bd076d96eaa48fad3
IEDL.DBID DOA
IngestDate Fri Oct 03 12:44:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d1794-d4a26e6be8025e61385cbfbc5d045905735938d53a9f44d5bd076d96eaa48fad3
OpenAccessLink https://doaj.org/article/dfd8f2315bc64361991245a341227784
ParticipantIDs doaj_primary_oai_doaj_org_article_dfd8f2315bc64361991245a341227784
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering proceedings
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
SSID ssj0002512433
Score 2.4007738
Snippet Airfoil noise due to pressure fluctuations impacts the efficiency of aircraft and has created significant concern in the aerospace industry. Hence, there is a...
SourceID doaj
SourceType Open Website
StartPage 24
SubjectTerms airfoil self-noise
extra trees
feature importance
gradient boosting
random forest
XGBoost
Title Comparative Study of Random Forest and Gradient Boosting Algorithms to Predict Airfoil Self-Noise
URI https://doaj.org/article/dfd8f2315bc64361991245a341227784
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  eissn: 2673-4591
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002512433
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iHryIouI3OXgNW5uPpsfdxdXTsvgBeytJk6yF3Y20VfDfO9MuuJ68eGygLZlHMvOYxxtCbuWdTUJqE-a410yY4JhV2jKltFHwDrbWumET2XSq5_N8tjXqCzVhvT1wH7iBC04HKEKkLSF5KlTqpEIauHzTNMt05wSaZPkWmcI7GLO24LxvY3Lg9QO_XmBKwGnhnWWJ-GXS32WTySE52JSBdNj__ojs-PUxMeMfK26KAr8vGgN9Aq4fVxRnaDYthQf6UHc6rZaOYmxQtkyHy0UElv-2amgb6azG7ktLh1UdYrWkz34Z2DRWjT8hr5P7l_Ej24xAYA5PCnPCpMpD0DRsyUPq1bK0wZbSQSmWo5mhzLl2kps8COGkdUmmXK68MUIH4_gp2V3HtT8jNNcCIqK0LlMrHLAu7oHK2cClDjwJ-pyMMB7Fe-9yUaDvdLcAaBQbNIq_0Lj4j49ckn2EqReNXJHdtv7w12Sv_Gyrpr7pgP4Gam2seQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Study+of+Random+Forest+and+Gradient+Boosting+Algorithms+to+Predict+Airfoil+Self-Noise&rft.jtitle=Engineering+proceedings&rft.au=Shantaram+B.+Nadkarni&rft.au=G.+S.+Vijay&rft.au=Raghavendra+C.+Kamath&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2673-4591&rft.volume=59&rft.issue=1&rft.spage=24&rft_id=info:doi/10.3390%2Fengproc2023059024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dfd8f2315bc64361991245a341227784