Some New Results in Linear Programming Problems with Fuzzy Cost Coefficients

The fuzzy primal simplex method proposed by Mahdavi-Amiri et al. and the fuzzy dual simplex method proposed by SH Nasseri and A Ebrahimnejad are two current procedures for solving linear programming problems with fuzzy cost coefficients known as reduced fuzzy numbers linear programming (RFNLP) probl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Walailak journal of science and technology Ročník 10; číslo 2
Hlavní autor: Ali EBRAHIMNEJAD
Médium: Journal Article
Jazyk:angličtina
Vydáno: Walailak University 01.04.2013
Témata:
ISSN:1686-3933, 2228-835X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The fuzzy primal simplex method proposed by Mahdavi-Amiri et al. and the fuzzy dual simplex method proposed by SH Nasseri and A Ebrahimnejad are two current procedures for solving linear programming problems with fuzzy cost coefficients known as reduced fuzzy numbers linear programming (RFNLP) problems. In this paper, we prove that in the absence of degeneracy these fuzzy methods stop in a finite numbers of iterations. We also prove the fundamental theorem of linear programming in a crisp environment to a fuzzy one. Finally, we illustrate our proof by use of a numerical example.
ISSN:1686-3933
2228-835X
DOI:10.2004/wjst.v10i2.424