Some New Results in Linear Programming Problems with Fuzzy Cost Coefficients

The fuzzy primal simplex method proposed by Mahdavi-Amiri et al. and the fuzzy dual simplex method proposed by SH Nasseri and A Ebrahimnejad are two current procedures for solving linear programming problems with fuzzy cost coefficients known as reduced fuzzy numbers linear programming (RFNLP) probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Walailak journal of science and technology Jg. 10; H. 2
1. Verfasser: Ali EBRAHIMNEJAD
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Walailak University 01.04.2013
Schlagworte:
ISSN:1686-3933, 2228-835X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fuzzy primal simplex method proposed by Mahdavi-Amiri et al. and the fuzzy dual simplex method proposed by SH Nasseri and A Ebrahimnejad are two current procedures for solving linear programming problems with fuzzy cost coefficients known as reduced fuzzy numbers linear programming (RFNLP) problems. In this paper, we prove that in the absence of degeneracy these fuzzy methods stop in a finite numbers of iterations. We also prove the fundamental theorem of linear programming in a crisp environment to a fuzzy one. Finally, we illustrate our proof by use of a numerical example.
ISSN:1686-3933
2228-835X
DOI:10.2004/wjst.v10i2.424