Adaptive deep Q-networks for accurate electric vehicle range estimation
It is critical that electric vehicles estimate the remaining driving range after charging, as this has direct implications for drivers' range anxiety and thus for large-scale EV adoption. Traditional approaches to predicting range using machine learning rely heavily on large amounts of vehicle-...
Gespeichert in:
| Veröffentlicht in: | Frontiers in big data Jg. 8 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Frontiers Media S.A
01.11.2025
|
| Schlagworte: | |
| ISSN: | 2624-909X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | It is critical that electric vehicles estimate the remaining driving range after charging, as this has direct implications for drivers' range anxiety and thus for large-scale EV adoption. Traditional approaches to predicting range using machine learning rely heavily on large amounts of vehicle-specific data and therefore are not scalable or adaptable. In this paper, a deep reinforcement learning framework is proposed, utilizing big data from 103 different EV models from 31 different manufacturers. This dataset combines several operational variables (state of charge, voltage, current, temperature, vehicle speed, and discharge characteristics) that reflect highly dynamic driving states. Some outliers in this heterogeneous data were reduced through a hybrid fuzzy k-means clustering approach, enhancing the quality of the data used in training. Secondly, a pathfinder meta-heuristics approach has been applied to optimize the reward function of the deep Q-learning algorithm, and thus accelerate convergence and improve accuracy. Experimental validation reveals that the proposed framework halves the range error to [−0.28, 0.40] for independent testing and [−0.23, 0.34] at 10-fold cross-validation. The proposed approach outperforms traditional machine learning and transformer-based approaches in Mean Absolute Error (outperforming by 61.86% and 4.86%, respectively) and in Root Mean Square Error (outperforming by 6.36% and 3.56%, respectively). This highlights the robustness of the proposed framework under complex, dynamic EV data and its ability to enable scalable intelligent range prediction, which engenders innovation in infrastructure and climate conscious mobility. |
|---|---|
| ISSN: | 2624-909X |
| DOI: | 10.3389/fdata.2025.1697478 |