Clustering of Attribute and/or Relational Data

A large class of clustering problems can be formulated as an optimizational problem in which the best clustering is searched for among all feasible clustering according to a selected criterion function. This clustering approach can be applied to a variety of very interesting clustering problems, as...

Full description

Saved in:
Bibliographic Details
Published in:Metodološki zvezki (Spletna izd.) Vol. 6; no. 2; p. 135
Main Authors: Ferligoj, Anuska, Kronegger, Luka
Format: Journal Article
Language:English
Published: Ljubljana Anuska Ferligoj 01.07.2009
Subjects:
ISSN:1854-0023, 1854-0031
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A large class of clustering problems can be formulated as an optimizational problem in which the best clustering is searched for among all feasible clustering according to a selected criterion function. This clustering approach can be applied to a variety of very interesting clustering problems, as it is possible to adapt it to a concrete clustering problem by an appropriate specification of the criterion function and/or by the definition of the set of feasible clusterings. Both, the blockmodeling problem (clustering of the relational data) and the clustering with relational constraint problem (clustering of the attribute and relational data) can be very successfully treated by this approach. It also opens many new developments in these areas. The paired clustering approaches are applied to the Slovenian scientific collaboration data. [PUBLICATION ABSTRACT]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1854-0023
1854-0031
DOI:10.51936/gvzj6999