ENUMERATING ALL CYCLES OF A PLANAR GRAPH
We present a new and elegant cycle vector space algorithm that runs in O(n 2 .α) steps and needs O:lpar;nn) space for enumerating all simple cycles of a planar graph with n vertices, where α is the total number of simple cycles in the graph Unlike backtrack algorithms, cycle vector space algorithms...
Uložené v:
| Vydané v: | Parallel algorithms and applications Ročník 10; číslo 1-2; s. 21 - 36 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Taylor & Francis Group
01.08.1996
|
| Predmet: | |
| ISSN: | 1063-7192 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a new and elegant cycle vector space algorithm that runs in O(n
2
.α) steps and needs O:lpar;nn) space for enumerating all simple cycles of a planar graph with n vertices, where α is the total number of simple cycles in the graph Unlike backtrack algorithms, cycle vector space algorithms for this problem are suitable for parallelization. A parallel version of this algorithm alone with a parallel version of Syslo's O(n.α) step algorithm for the same problem are on an exclusive-read, exclusive-write parallel RAM model with p processors. The results of an implementation of our parallel algorithm on a meshconnected SIMD computer are also presented. |
|---|---|
| ISSN: | 1063-7192 |
| DOI: | 10.1080/10637199608915603 |